International Journal of Earth Sciences

, Volume 101, Issue 7, pp 1705–1722 | Cite as

Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt

  • Kamal A. Ali
  • Abdel-Kader M. Moghazi
  • Ayman E. Maurice
  • Sayed A. Omar
  • Qiang Wang
  • Simon A. Wilde
  • Ewais M. Moussa
  • William I. Manton
  • Robert J. Stern
Original Paper


The Humr Akarim and Humrat Mukbid plutons, in the central Eastern Desert of Egypt, are late Neoproterozoic post-collisional alkaline A-type granites. Humr Akarim and Humrat Mukbid plutonic rocks consist of subsolvus alkali granites and a subordinate roof facies of albite granite, which hosts greisen and Sn–Mo-mineralized quartz veins; textural and field evidence strongly suggest the presence of late magmatic F-rich fluids. The granites are Si-alkali rich, Mg–Ca–Ti poor with high Rb/Sr (20–123), and low K/Rb (27–65). They are enriched in high field strength elements (e.g., Nb, Ta, Zr, Y, U, Th) and heavy rare earth elements (Lan/Ybn = 0.27–0.95) and exhibit significant tetrad effects in REE patterns. These geochemical attributes indicate that granite trace element distribution was controlled by crystal fractionation as well as interaction with fluorine-rich magmatic fluids. U–Pb SHRIMP zircon dating indicates an age of ~630–620 Ma but with abundant evidence that zircons were affected by late corrosive fluids (e.g., discordance, high common Pb). εNd at 620 Ma ranges from +3.4 to +6.8 (mean = +5.0) for Humr Akarim granitic rocks and from +4.8 to +7.5 (mean = +5.8) for Humrat Mukbid granitic rocks. Some slightly older zircons (~740 Ma, 703 Ma) may have been inherited from older granites in the region. Our U–Pb zircon data and Nd isotope results indicate a juvenile magma source of Neoproterozoic age like that responsible for forming most other ANS crust and refute previous conclusions that pre-Neoproterozoic continental crust was involved in the generation of the studied granites.


U–Pb zircon dating A-type granite Neoproterozoic Nd isotopes Arabian-Nubian Shield 

Supplementary material

531_2012_759_MOESM1_ESM.pdf (46 kb)
Supplementary material 1 (PDF 47 kb)


  1. Abd El-Naby HH, Dawood YH, Saleh GM (2000) Pan-African Granitoids Magmatism in the Gabel Homr Akarem Area, South Eastern Desert, Egypt: geochemistry and petrogenetic implications. Chemie der Erde 60:251–267Google Scholar
  2. Abdel Rahman AM, Martin RF (1990) The Mount Gharib A-type granite Nubian Shield: role of metasomatism at the source. Contrib Miner Petrol 104:173–183CrossRefGoogle Scholar
  3. Abdelsalam MG, Liégeois JP, Stern RJ (2002) The Saharan Metacraton. J Afr Earth Sci 34:119–136CrossRefGoogle Scholar
  4. Agangi A, Kamenetsky VS, McPhie J (2010) The role of fluorine in the concentration and transport of lithophile trace elements in felsic magmas: insights from the Gawler Range Volcanics, South Australia. Chem Geol 273:314–325CrossRefGoogle Scholar
  5. Agar RA, Stacey JS, Whitehouse MJ (1992) Evolution of the southern Afif terrane—a geochronologic study. Saudi Arabian Deputy Ministry for Mineral Resources, Open File Report DGMR-OF-10-15: 41Google Scholar
  6. Akaad MK, Noweir AM (1980) Geology and lithostratigraphy of the Arabian Desert orogenic belt of Egypt between latitudes 25° 35′ and 26° 30′N. Inst Appl Geol Jeddah Bull 3:127–135Google Scholar
  7. Ali KA, Stern RJ, Manton WI, Kimura J-I, Khamees HA (2009) Geochemistry, Nd isotopes and U-Pb SHRIMP dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insights into the 750 Ma crust-forming event. Precambr Res 171:1–22CrossRefGoogle Scholar
  8. Ali KA, Azer MK, Gahlan HA, Wilde SA, Samuel MD, Stern RJ (2010a) Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani Suture, South Eastern Desert of Egypt. Gond Res 18:583–595CrossRefGoogle Scholar
  9. Ali KA, Stern RJ, Manton WI, Kimura J-I, Whitehouse MJ, Mukherjee SK, Johnson PR, Griffin WR (2010b) Geochemical, U-Pb zircon, and Nd isotope investigations of the Neoproterozoic Ghawjah Metavolcanic rocks, Northwestern Saudi Arabia. Lithos 120:379–393CrossRefGoogle Scholar
  10. Anderson IC, Frost CD, Frost BR (2003) Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambr Res 124:243–267CrossRefGoogle Scholar
  11. Andresen A, El-Rus MA, Myhre PI, Boghdady GY, Corfu F (2009) U-Pb TIMS age constraints on the evolution of the Neoproterozoic Meatiq Gneiss Dome, Eastern Desert, Egypt. Int J Earth Sci 98:481–497CrossRefGoogle Scholar
  12. Arth JG (1976) Behaviour of trace elements during magmatic processes—a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47Google Scholar
  13. Audétat A, Günther D, Heinrich CA (2000) Magmatic–hydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F-mineralized Mole Granite (Australia). Gechim Cosmochim Acta 19:3373–3393CrossRefGoogle Scholar
  14. Bau M (1991) Rare earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230CrossRefGoogle Scholar
  15. Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333CrossRefGoogle Scholar
  16. Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Contrib Miner Petrol 45:231–246Google Scholar
  17. Be’eri-Shlevin Y, Katzir Y, Whitehouse M (2009) Post-collisional tectono-magmatic evolution in the northern Arabian-Nubian Shield (ANS): time constraints from ionprobe U–Pb dating of zircon. J Geol Soc Lond 166:71–85CrossRefGoogle Scholar
  18. Beyth M, Stern RJ, Altherr R, Kröner A (1994) The Late Precambrian Timna igneous complex Southern Israel: evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos 31:103–124CrossRefGoogle Scholar
  19. Black R, Liégeois JP (1993) Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J Geol Soc Lond 150:89–98CrossRefGoogle Scholar
  20. Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29CrossRefGoogle Scholar
  21. Bregar M, Bauernhofer A, Pelz K, Kloetzli U, Fritz H, Neumayr P (2002) A late Neoproterozoic magmatic core complex in the Eastern Desert of Egypt: emplacement of granitoids in a wrench-tectonic setting. Precambr Res 118:59–82CrossRefGoogle Scholar
  22. Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551CrossRefGoogle Scholar
  23. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  24. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan fold belt. Trans R Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  25. Charoy B, Raimault L (1994) Zr-, Th- and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. J Petrol 35:919–962Google Scholar
  26. Clarke DB (1992) The mineralogy of peraluminous granites: a review. Can Miner 19:3–17Google Scholar
  27. Clarke DB, MacDonald MA, Reynolds PH, Longstaffe FG (1993) Granites from the Eastern Part of the South Mountain Batholith, Nova Scotia. J Petrol 34:653–679Google Scholar
  28. Collins WJ, Beams SD, White AJ, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Miner Petrol 80:189–200CrossRefGoogle Scholar
  29. Cuney M, Marignac C, Weisbrod A (1992) The Beauvoir topaz-lepidolite albite granite (Massif Central France): the disseminated magmatic Sn–Li–Ta–Nb–Be mineralization. Econ Geol 87:1766–1794CrossRefGoogle Scholar
  30. David K, Schiano P, Allégre CJ (2000) Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet Sci Lett 178:285–301CrossRefGoogle Scholar
  31. de la Roche H, Leterrier J, Grandclaude P, Marchal M (1980) A classification of volcanic and plutonic rocks using R1R2 diagram and major-element analyses—its relationships with current nomenclature. Chem Geol 29:183–210CrossRefGoogle Scholar
  32. Dixon TH, Golombek MP (1988) Late Precambrian crustal accretion rates in Northeast Africa and Arabia. Geology 16:991–994CrossRefGoogle Scholar
  33. Dostal J, Chatterjee AK (1995) Origin of topaz-bearing and related peraluminous granites of the late Devonian Davis Lake pluton, Nova Scotia, Canada: crystal versus fluid fractionation. Chem Geol 123:67–88CrossRefGoogle Scholar
  34. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134CrossRefGoogle Scholar
  35. Eby GN (1992) Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  36. El-Gaby S (1975) Petrochemistry and geochemistry of some granites from Egypt. Neues Jahrbuch für Mineralogie 124:147–189Google Scholar
  37. El-Gaby S, List FK, Tehrani R (1988) Geology, evolution and metallogenesis of the Pan-African belt in Egypt. In: El-Gaby S, Greiling RO (eds) The Pan-African belt of NE Africa and adjoining areas. Vieweg, Braunschweig, pp 289–316Google Scholar
  38. Ewing RC, Meldrum A, Wand L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. Rev Miner Geochem 53:387–425CrossRefGoogle Scholar
  39. Eyal M, Litvinovsky B, Jahn B, Zanvilevich A, Katzir Y (2010) Origin and evolution of post-collisional magmatism: Coeval Neoproterozoic calc-alkaline and alkaline suites of the Sinai Peninsula. Chem Geol 269:153–179CrossRefGoogle Scholar
  40. Förster HJ (2001) Synchysite-(Y)–synchysite-(Ce) solid solutions from Markersbach, Erzgebirge, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Miner Petrol 72:259–280CrossRefGoogle Scholar
  41. Geological Map of Egypt (1987) Scale 1:500,000. In: Klitsch E, List FK, Pöhlmann G (Compil) Conoco Coal and the Egyptian General Petroleum Corporation. Technische Fachhochschule, BerlinGoogle Scholar
  42. Gieré R (1986) Zircon, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE. Contrib Miner Petrol 93:459–470CrossRefGoogle Scholar
  43. Gieré R, Williams CT (1992) REE—bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contrib Miner Petrol 112:83–100CrossRefGoogle Scholar
  44. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth Planet Sci Lett 70:221–236CrossRefGoogle Scholar
  45. Greenberg JK (1981) Characteristics and origin of Egyptian younger granites. Geol Soc Am Bull 92:790–840Google Scholar
  46. Greiling RO, Abdeen MM, Dardir AA, El Akhal H, El-Ramly MF, Kamal El Din GM, Osman AF, Rashwan AA, Rice AH, Sadek MF (1994) A structural synthesis of the Proterozoic Arabian-Nubian Shield in Egypt. Geol Rundsch 83:484–501CrossRefGoogle Scholar
  47. Haapala I, Frindt S, Kandara J (2007) Cretaceous Gross Spitzkoppe and klein Spitzkoppe stocks in Namibia: topaz-bearing A-type granites related to continental rifting and mantle plume. Lithos 97:174–192CrossRefGoogle Scholar
  48. Haas JR, Shock EL, Sassani DC (1995) Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Gechim Cosmochim Acta 59:4329–4350CrossRefGoogle Scholar
  49. Han BF, Jahn BM, Hong DW, Kagami H, Sun YL (1997) Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem Geol 138:135–159CrossRefGoogle Scholar
  50. Hargrove US, Stern RJ, Kimura J-I, Manton WI, Johnson PR (2006) How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi’r Umq suture zone, Saudi Arabia. Earth Planet Sci Lett 252:308–326CrossRefGoogle Scholar
  51. Harris N (1985) Alkaline complexes from the Arabian Shield. J Afr Earth Sci 3:83–88Google Scholar
  52. Hassanen MA, Harraz HZ (1996) Geochemistry and Sr- and Nd-isotopic study on rare-metal-bearing granitic rocks, central Eastern Desert, Egypt. Precambr Res 80:1–22CrossRefGoogle Scholar
  53. Heinrich CA (1990) The chemistry of hydrothermal tin (–tungsten) ore deposition. Econ Geol 85:457–481CrossRefGoogle Scholar
  54. Higgins NC, Solomon M, Varne R (1985) The genesis of the Blue Tier Batholith, northeastern Tasmania, Australia. Lithos 18:129–149CrossRefGoogle Scholar
  55. Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508CrossRefGoogle Scholar
  56. Jahn S, Matheis G, Mohamed FH, Tamish MO, Shalaby IM (1993) Rare-metal province Central Eastern Desert, Egypt, III. Geochemical indicators of rare-metal potentials (a contribution to IGCP 282 ‘Rare-metal Mineralization’). In: Thorweihe U, Schandelmeier H (eds) Geoscientific research in Northeast Africa. Balkema, Rotterdam, pp 489–494Google Scholar
  57. Jahn BM, Wu F, Capdevila R, Wang Y, Zhao Z (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’ an (Khingan) Mountains in NE China. Lithos 59:171–198CrossRefGoogle Scholar
  58. Jarrar GH, Manton WI, Stern RJ, Zachmann D (2008) Late Neoproterozoic A-type granites in the northernmost Arabian-Nubian Shield formed by fractionation of basaltic melts. Chemie der Erde 68:295–312CrossRefGoogle Scholar
  59. Johnson PR (1998) Tectonic map of Saudi Arabia and adjacent areas. Saudi Arabian Deputy Ministry for Mineral Resource, Technical Report USGS-TR-98-3, scale 1:40,000,000Google Scholar
  60. Johnson PR, Woldehaimanot B (2003) Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In: Yoshida M, Dasgupta S, Windley B (eds) Proterozoic East Gondwana: supercontinent assembly and breakup. Geol Soc Lond, Special Publications 206:289–325Google Scholar
  61. Johnson PR, Andresen A, Collins AS, Fowler AR, Fritz H, Ghebrab W, Kusky T, Stern RJ (2011) Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic event in the closing stages of the northern East African Orogen. J Afr Earth Sci 61:167–232CrossRefGoogle Scholar
  62. Katzir Y, Eyal M, Litvinovsky B, Jahn BM, Zanvilevich AN, Valley JW, Beeri Y, Pelly I, Shimshilashvilli E (2007a) Petrogenesis of A-type granites and origin of vertical zoning in the Katharina pluton, Gebel Mussa (Mt. Moses) area, Sinai, Egypt. Lithos 95:208–228CrossRefGoogle Scholar
  63. Katzir Y, Litvinovsky B, Jahn B, Eyal M, Zanvilevich A, Valley JW, Vapnik Y, Beeri Y, Spicuzza M (2007b) Interaction between coeval mafic and A-type silicic magmas from composite dykes in a bimodal suite of southern Israel, northernmost Arabian-Nubian Shield: geochemical and isotope constraints. Lithos 97:336–364CrossRefGoogle Scholar
  64. Kawabe I (1995) Tetrad effects and fine structures of REE abundance patterns of granitic and rhyolitic rocks: ICP-AES determinations of REE and Y in eight GSL reference rocks. Geochem J 29:213–230CrossRefGoogle Scholar
  65. Keppler H, Wyllie PJ (1990) Role of fluids in transport of uranium and thorium in magmatic processes. Nature 348:531–533CrossRefGoogle Scholar
  66. Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-Hf. Contrib Miner Petrol 109:139–150CrossRefGoogle Scholar
  67. Kröner A (1985) Ophiolites and the evolution of tectonic boundaries in the late Proterozoic Arabian-Nubian Shield of northeastern Africa and Arabia. Precambr Res 27:277–300CrossRefGoogle Scholar
  68. Kröner A, Kruger J, Rashwan AA (1994) Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol Rundsch 83:502–513CrossRefGoogle Scholar
  69. Küster D (2009) Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield: ore deposit types, tectono-metallogenetic setting and petrogenetic framework. Ore Geol Rev 35:68–86CrossRefGoogle Scholar
  70. Küster D, Harms U (1998) Post-collisional potassic granitoids from the southern and northwestern parts of the late Neoproterozoic East African Orogen: a review. Lithos 45:177–195CrossRefGoogle Scholar
  71. Küster D, Liégeois JP, Matukov D, Sergeev S, Lucassen F (2008) Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): evidence for a Bayudian event (920–900 Ma) preceding the Pan-African orogenic cycle (860–590 Ma) at the eastern Boundary of the Saharan Metacraton. Precambr Res 164:16–39CrossRefGoogle Scholar
  72. Lee JH, Byrne RH (1992) Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim Cosmochim Acta 56:1127–1133CrossRefGoogle Scholar
  73. Li XH, Li ZX, Wingate MTD, Chung SL, Liu Y, Lin GC, Li WX (2006) Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia? Precambr Res 146:1–15CrossRefGoogle Scholar
  74. Li ZX, Wartho J-A, Occhipinti S, Zhang CL, Li XH, Wang J, Bao C (2007) Early history of eastern Sibao Orogen (South China) during the assembly of Rodinia: new mica 40Ar/39Ar dating and SHRIMP U-Pb detital zircon provenance constraints. Precambr Res 159:79–94CrossRefGoogle Scholar
  75. Liégeois JP, Black R (1987) Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas (Mali). In: Fitton JG, UptonBJG (eds) Alkaline igneous rocks. J Geol Soc Lond, Special Publication 30:381–401Google Scholar
  76. Liégeois JP, Stern RJ (2010) Sr–Nd isotopes and the geochemistry of granite-gneiss complexes from the Meatiq and Hafafit domes, Eastern, Desert, Egypt: no evidence for pre-Neoproterozoic crust. J Afr Earth Sci 57:31–40CrossRefGoogle Scholar
  77. Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geol Soc Am, Abstracts with programs 11:468Google Scholar
  78. London D (1986a) The magmatic–hydrothermal transition in the Tanco rare-element pegmatites: evidence from fluid inclusions and phase equilibrium experiments. Am Miner 71:376–395Google Scholar
  79. London D (1986b) Formation of tourmaline-rich gem pockets in miarolitic pegmatites. Am Miner 71:396–405Google Scholar
  80. London D (1987) Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine. Gechim Cosmochim Acta 51:403–420CrossRefGoogle Scholar
  81. London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can Miner 30:499–540Google Scholar
  82. London D, Hervig RL, Morgan GB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite–pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib Miner Petrol 99:360–373CrossRefGoogle Scholar
  83. Ludwig KR (2001a) SQUID 1.02: a user’s manual. Berkeley Geochronology Center, Special Publication No 2, Berkeley, CA, p 19Google Scholar
  84. Ludwig KR (2001b) Users manual for Isoplot/Ex version 2.05. Berkeley Geochronology Center, Special Publication No 1a, Berkeley, CA, p 48Google Scholar
  85. Mackenzie DE, Black LP, Sun S–S (1988) Origin of alkali feldspar granites: an example from the Poimena Granite, northeastern Tasmania, Australia. Geochim Cosmochim Acta 52:2507–2524CrossRefGoogle Scholar
  86. Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb. Contrib Miner Petrol 76:206–215CrossRefGoogle Scholar
  87. Masuda A, Kawakami O, Dohmoto Y, Takenaka T (1987) Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem J 21:119–124CrossRefGoogle Scholar
  88. McLennan SM (1994) Rare earth element geochemistry and the “tetrad” effect. Geochim Cosmochim Acta 58:2025–2033CrossRefGoogle Scholar
  89. Mohamed FH, El-Sayed MM (2008) Post-orogenic and anorogenic A-type fluorite-bearing granitoids, Eastern Desert, Egypt: petrogenetic and geotectonic implications. Chemie der Erde 68:431–450CrossRefGoogle Scholar
  90. Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Gechim Cosmochim Acta 66:1185–1196CrossRefGoogle Scholar
  91. Moussa EMM, Stern RJ, Manton WI, Ali KA (2008) SHRIMP zircon dating and Sm/Nd isotopic investigations of Neoproterozoic granitoids, Eastern Desert, Egypt. Precambr Res 160:341–356CrossRefGoogle Scholar
  92. Muecke GK, Clarke DB (1981) Geochemical evolution of the south Mountain Batholith, Nova Scotia: rare-earth element evidence. Can Miner 19:133–145Google Scholar
  93. Nelson DR (1997) Complication of SHRIMP U-Pb Zircon Geochronology Data, 1996. Geological Survey of Western Australia, Record 1997/2, p 189Google Scholar
  94. Nelson BK, DePaolo DJ (1985) Rapid production of continental crust 1.7 to 1.9 by ago: Nd isotopic evidence from the basement of the North American midcontinent. Geol Soc Am Bull 96:746–754CrossRefGoogle Scholar
  95. Nurmi PA, Haapala I (1986) The Proterozoic granitoids of Finland: granite types, metallogeny and relation to crustal evolution. Bull Geol Soc Finl 58:431–453Google Scholar
  96. Pan Y, Fleet ME (1996) Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine. Contrib Miner Petrol 123:251–262CrossRefGoogle Scholar
  97. Pearce J, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983Google Scholar
  98. Quick JE (1991) Late Proterozoic transpression on the Nabitah fault system-implications for the assembly of the Arabian Shield. Precambr Res 53:119–147CrossRefGoogle Scholar
  99. Saleh GM, Dawood YH, Abd El-Naby HH (2002) Petrological and geochemical constraints on the origin of the granitoid suite of the Homret Mikpid area, south Eastern Desert, Egypt. J Miner Petrol Sci 97:47–58CrossRefGoogle Scholar
  100. Schönenberger J, Markl G (2008) The magmatic and fluid evolution of the Motzfeldt intrusion in South Greenland: insights into the formation of Agpaitic and Miaskitic rocks. J Petrol 49:1549–1577CrossRefGoogle Scholar
  101. Shang CK, Morteani G, Satir M, Taubald H (2010) Neoproterozoic continental growth prior to Gondwana assembly: constraints from zircon-titanite geochronology, geochemistry and petrography of ring complex granitoids, Sudan. Lithos 118:61–81CrossRefGoogle Scholar
  102. Shearer CK, Papike JJ, Laul JC (1985) Chemistry of potassium feldspars from three zoned pegmatites, Black Hill, South Dakota: implications concerning pegmatite evolution. Geochim Cosmochim Acta 49:663–673CrossRefGoogle Scholar
  103. Stacey JS, Hedge CE (1984) Geochronologic and isotopic evidence for early Proterozoic crust in the eastern Arabian Shield. Geology 12(5):310–313CrossRefGoogle Scholar
  104. Stern RJ (1981) Petrogenesis and tectonic setting of Late Precambrian ensimatic volcanic rocks, Central Eastern Desert of Egypt. Precambr Res 16:197–232CrossRefGoogle Scholar
  105. Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Ann Rev Earth Planet Sci 22:319–351CrossRefGoogle Scholar
  106. Stern RJ (2002) Crustal evolution in the East African Orogen: a Neodymium isotopic perspective. J Afr Earth Sci 34:109–117CrossRefGoogle Scholar
  107. Stern RJ, Hedge CE (1985) Geochronologic and isotopic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci 285:97–127CrossRefGoogle Scholar
  108. Stern RJ, Johnson PR (2010) Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci Rev 101:29–67CrossRefGoogle Scholar
  109. Stern RJ, Ali KA, Liégeois JP, Johnson PR, Kozdroj W, Kattan FH (2010) Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian Shield. Am J Sci 310:791–811CrossRefGoogle Scholar
  110. Stoeser D, Camp E (1985) Pan-African microplate accretion of the Arabian Shield. Geol Soc Am Bull 96:817–826CrossRefGoogle Scholar
  111. Stoeser D, Frost C (2006) Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem Geol 226:163–188CrossRefGoogle Scholar
  112. Sultan M, Chamberlain KR, Bowring SA, Arvidson RE, Abuzied H, El Kaliouby B (1990) Geochronologic and isotopic evidence for involvement of pre-Pan-African crust in the Nubian Shield, Egypt. Geology 18:761–764CrossRefGoogle Scholar
  113. Sultan M, Tucker RD, El Alfy Z, Attia R, Ragab AG (1994) U-Pb (Zircon) ages for the gneissic terrane west of the Nile, southern Egypt. Geol Rundsch 83:514–522CrossRefGoogle Scholar
  114. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. J Geol soc Lond, Special Publications 42:313–345Google Scholar
  115. Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44CrossRefGoogle Scholar
  116. Tange Y, Takahashi E (2004) Stability of the high-pressure polymorph of zircon (ZrSiO4) in the deep mantle. Phys Earth Planet Interiors 143:223–229CrossRefGoogle Scholar
  117. Vail JR (1985) Pan-African (Late Precambrian) tectonic terrains and the reconstruction of the Arabian-Nubian Shield. Geology 13:839–842CrossRefGoogle Scholar
  118. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma type. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  119. Webster JD, Holloway JR, Herving RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134CrossRefGoogle Scholar
  120. Webster JD, Thomas R, Förster HJ, Seltmann R, Tappen C (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany. Mineralium Deposita 39:452–472CrossRefGoogle Scholar
  121. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Miner Petrol 95:407–419CrossRefGoogle Scholar
  122. Whitehouse MJ, Windley BF, Ba-Bttat MA, Fanning CM, Rex DC (1998) Crustal evolution and terrane correlation in the eastern Arabian Shield, Yemen: geochronological constraints. J Geol Soc Lond 155:281–295CrossRefGoogle Scholar
  123. Whitehouse MJ, Stoeser DB, Stacey JS (2001) The Khida terrane—geochronologic and isotopic evidence for Paleoproterozoic and Archean crust in the eastern Arabian Shield of Saudi Arabia. Gond Res 4:200–202CrossRefGoogle Scholar
  124. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35Google Scholar
  125. Winkler HGF, Boese M, Marcopoulos T (1975) Low temperature granite melts. Neues Jahrbach Für Mineralogie Monatshefte 6:245–268Google Scholar
  126. Wood SA (1990a) The aqueous geochemistry of the rare-earth elements and yttrium 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 82:99–125CrossRefGoogle Scholar
  127. Wood SA (1990b) The aqueous geochemistry of the rare-earth elements and yttrium 2. theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol 99:99–125CrossRefGoogle Scholar
  128. Wu FY, Sun DY, Li H, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173CrossRefGoogle Scholar
  129. Zhao XF, Zhou MF, Li JW, Wu FY (2008) Association of Neoproterozoic A- and I-type granites in South China: implications for generation of A-type granites in a subduction-related environment. Chem Geol 257:1–15CrossRefGoogle Scholar
  130. Zheng YF, Zhang SB, Zhao ZF, Wu Y, Li X, Li Z, Wu FY (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96:127–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kamal A. Ali
    • 1
    • 7
  • Abdel-Kader M. Moghazi
    • 1
    • 2
  • Ayman E. Maurice
    • 3
  • Sayed A. Omar
    • 4
  • Qiang Wang
    • 5
  • Simon A. Wilde
    • 6
  • Ewais M. Moussa
    • 4
  • William I. Manton
    • 7
  • Robert J. Stern
    • 7
  1. 1.Department of Mineral Resources and Rocks, Faculty of Earth SciencesKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.Department of Geology, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  3. 3.Geology Department, Faculty of ScienceBeni Suef UniversityBeni SuefEgypt
  4. 4.Nuclear Material AuthorityEl Maadi, KattamyiaEgypt
  5. 5.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouPeople’s Republic of China
  6. 6.Department of Applied GeologyCurtin UniversityPerthAustralia
  7. 7.Geosciences DepartmentUniversity of Texas at DallasRichardsonUSA

Personalised recommendations