Skip to main content
Log in

Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian unit, Bohemian Massif

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Teplá–Barrandian unit (TBU) has long been considered as a simply bivergent supracrustal ‘median massif’ above the Saxothuringian subduction zone in the Variscan orogenic belt. This contribution reveals a much more complex style of the Variscan tectonometamorphic overprint and resulting architecture of the Neoproterozoic basement of the TBU. For the first time, we describe the crustal-scale NE–SW-trending dextral transpressional Krakovec shear zone (KSZ) that intersects the TBU and thrusts its higher grade northwestern portion severely reworked by Variscan deformation over a southeastern very low grade portion with well-preserved Cadomian structures and only brittle Variscan deformation. The age of movements along the KSZ is inferred as Late Devonian (~380–370 Ma). On the basis of structural, microstructural, and anisotropy of magnetic susceptibility data from the KSZ, we propose a new synthetic model for the deformation partitioning in the Teplá–Barrandian upper crust in response to the Late Devonian to early Carboniferous subduction and underthrusting of the Saxothuringan lithosphere. We conclude that the Saxothuringian/Teplá–Barrandian convergence was nearly frontal during ~380–346 Ma and was partitioned into pure shear dominated domains that accommodated orogen-perpendicular shortening alternating with orogen-parallel high-strain domains that accommodated dextral transpression or bilateral extrusion. The synconvergent shortening of the TBU was terminated by a rapid gravity-driven collapse of the thickened lithosphere at ~346–337 Ma followed by, or partly simultaneous with, dextral strike-slip along the Baltica margin-parallel zones, driven by the westward movement of Gondwana from approximately 345 Ma onwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Babuška V, Fiala J, Plomerová J (2010) Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe). Int J Earth Sci 99:891–907

    Article  Google Scholar 

  • Badham JP (1982) Strike slip orogens—an explanation for the Hercynides. J Geol Soc London 139:495–506

    Article  Google Scholar 

  • Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1591

    Article  Google Scholar 

  • Burg JP (1999) Ductile structures and instabilities: their implication for Variscan tectonics in the Ardennes. Tectonophysics 309:1–25

    Article  Google Scholar 

  • Čech S, Havlíček V, Zikmundová J (1988) Upper Devonian and Lower Carboniferous in north-eastern Bohemia (based on boreholes in the Hradec Králové area). Bull Central Geol Surv 64:65–75

    Google Scholar 

  • Cháb J, Žáček V (1994) Metamorphism of the Teplá Crystalline complex. KTB Rep 94:33–37

    Google Scholar 

  • Cháb J, Suchý V, Vejnar Z (1995) Teplá–Barrandian Zone (Bohemicum): metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 404–410

    Google Scholar 

  • Chlupáč I, Zikmundová J (1976) The Devonian and lower Carboniferous in the Nepasice bore in east Bohemia. Bull Central Geol Surv 51:269–278

    Google Scholar 

  • Chlupáčová M, Hrouda F, Janák J, Rejl L (1975) The fabric, genesis and relative age relations of the granitic rocks of the Čistá–Jesenice massif. Gerlands Beitr Geophys 84:487–500

    Google Scholar 

  • Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180

    Article  Google Scholar 

  • Crowley QG, Timmermann H, Noble SR, Holland JG (2002) Palaeozoic terrane amalgamation in central Europe: a REE and Sm–Nd isotope study of the pre-Variscan basement, NE Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of central Europe. Geol Soc London Spec Publ 201:157–176

  • Dallmeyer RD, Urban M (1994) Variscan vs. Cadomian tectonothermal evolution within the Teplá–Barrandian zone, Bohemian Massif, Czech Republic: evidence from 40Ar/39Ar mineral and whole-rock slate/phyllite ages. J Czech Geol Soc 39:21–22

    Google Scholar 

  • Dallmeyer RD, Urban M (1998) Variscan versus Cadomian tectonothermal activity in northwestern sectors of the Teplá–Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106

    Article  Google Scholar 

  • Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci 99:299–325

    Article  Google Scholar 

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex—evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). Geol Rundsch 87:135–149

    Article  Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit—a correlation of U-Pb isotopic-dilution TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Dostal J, Patočka F, Pin C (2001) Middle/Late Cambrian intracontinental rifting in the central west Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of the bimodal metavolcanic rocks. Geol J 36:1–17

    Article  Google Scholar 

  • Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757

    Article  Google Scholar 

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231

    Article  Google Scholar 

  • Dubanský A (1984) Determination of the radiogenic age by the K–Ar method (geochronological data from the Bohemian Massif in the ČSR region). Collect Sci Works Tech Univ Ostrava 30:137–170

    Google Scholar 

  • Filip J, Suchý V (2004) Thermal and tectonic history of the Barrandian Lower Paleozoic, Czech Republic: is there a fission-track evidence for Carboniferous–Permian overburden and pre-Westphalian alpinotype thrusting? Bull Geosci 79:107–112

    Google Scholar 

  • Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London Spec Publ 179:155–174

  • Forster MA, Lister GS (2008) Tectonic sequence diagrams and the structural evolution of schists and gneisses in multiply deformed terranes. J Geol Soc London 165:923–939

    Article  Google Scholar 

  • Franěk J, Schulmann K, Lexa O, Tomek Č, Edel JB (2011) Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: implications for exhumation of high-pressure rocks in large hot orogens. J Metamorph Geol 29:53–78

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London Spec Publ 179:35–61

  • Franke W, Zelazniewicz A (2002) Structure and evolution of the Bohemian arc. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc London Spec Publ 201: 279–293

  • Gebauer D (1993) Geochronologische Übersicht. In: Bauberger W (ed) Geologische Karte von Bayern 1:25000, Erläuterungen zum Blatt Nr. 6439 Tännesberg Bayer. Geol L Amt, München, pp 10–22

  • Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch 87:124–134

    Article  Google Scholar 

  • Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá–Barrandian unit, Bohemian Massif. Precambrian Res 176:27–45

    Article  Google Scholar 

  • Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508

    Article  Google Scholar 

  • Havlíček V (1963) Tectogenetic disruption of the Barrandian Paleozoic. J Geol Sci 1:77–102

    Google Scholar 

  • Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia). J Geol Sci 35:7–48

    Google Scholar 

  • Hofmann M, Linnemann U, Gerdes A, Ullrich B, Schauer M (2009) Timing of dextral strike-slip processes and basement exhumation in the Elbe Zone (Saxo-Thuringian Zone): the final pulse of the Variscan Orogeny in the Bohemian Massif constrained by LA-SF-ICP-MS U-Pb zircon data. Geol Soc London Spec Publ 327:197–214

    Article  Google Scholar 

  • Holubec J (1995) Structure (the Teplá–Barrandian Zone). In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 392–397

    Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Jackson M, Tauxe L (1991) Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Rev Geophys 29:371–376

    Google Scholar 

  • Kachlík V (1996) Contact metamorphic host rocks of the Lestkov massif and their significance for reconstruction of tectonometamorphic evolution of the Teplá–Barrandian unit. Geoscience Research Reports for 1996, pp 81–82

  • Kachlík V (1999) Relationship between Moldanubicum, the Kutná Hora crystalline unit, and Bohemicum (Central Bohemia, Czech Republic): a result of the polyphase nappe tectonics. J Czech Geol Soc 44:201–289

    Google Scholar 

  • Klomínský J (1963) Geology of the Čistá Massif. J Geol Sci 3:75–99

    Google Scholar 

  • Klomínský J, Jarchovský T, Rajpoot GS (2010) The atlas of plutonic rocks and orthogneisses in the Bohemian Massif. Radioactive Waste Repository Authority of the Czech Republic, Technical Report No. TR-01-2010, Prague

  • Konopásek J, Schulmann K (2005) Contrasting Early Carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (central European Variscides). J Geol Soc London 162:463–470

    Article  Google Scholar 

  • Kopecký L (1987) The Čistá ring structure, Czechoslovakia. In: Proceedings of the 1st Seminar on carbonatites and alkaline rocks of the Bohemian Massif and ambient regions. Czech Geological Survey, Prague, pp 23–58

  • Kopecký L, Dobeš M, Fiala J, Št’ovíčková N (1970) Fenites of the Bohemian Massif and the relations between fenitization, alkaline volcanism and deep fault tectonics. J Geol Sci 16:51–107

    Google Scholar 

  • Kopecký L, Chlupáčová M, Klomínský J, Sokol A (1997) The Čistá–Jesenice pluton in western Bohemia: geochemistry, geology, petrophysics and ore potential. J Geol Sci 31:97–127

    Google Scholar 

  • Košler J, Bowes DR, Farrow CM, Hopgood AM, Rieder M, Rogers G (1997) Constraints on the timing of events in the multi-episodic of the Teplá–Barrandian complex, western Bohemia, from integration of deformational sequence and Rb–Sr isotopic data. N Jb Miner Mh 5:203–220

    Google Scholar 

  • Kretz R (1983) Symbols for rock forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Lüneburg CM, Lebit HDW (1998) The development of a single cleavage in an area of repeated folding. J Struct Geol 20:1531–1548

    Article  Google Scholar 

  • Martínez Catalán JR (2011) Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23:241–247

    Article  Google Scholar 

  • Matte P (1986) Tectonic and plate tectonic model for the Variscan belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Miller RB, Paterson SR, Lebit H, Alsleben H, Lüneburg C (2006) Significance of composite lineations in the mid- to deep crust: a case study from the North Cascades, Washington. J Struct Geol 28:302–322

    Article  Google Scholar 

  • Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682

    Article  Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan A, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222

    Article  Google Scholar 

  • Neubauer F (2002) Evolution of late Neoproterozoic to early Paleozoic tectonic elements in Central and Southeast European Alpine mountain belts: review and synthesis. Tectonophysics 352:87–103

    Article  Google Scholar 

  • Ordynec GJ, Žukova VI, Habásko J (1984) Prevariscan uranium mineralisation in the Proterozoic of the Bohemian Massif. J Miner Geol 29:69–77

    Google Scholar 

  • Park RG (1969) Structural correlation in metamorphic belts. Tectonophysics 7:323–338

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin

    Google Scholar 

  • Pertoldová J, Verner K, Vrána S, Buriánek D, Štědrá V, Vondrovic L (2010) Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. J Geosci 55:299–319

    Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 177:263–292

    Google Scholar 

  • Pin C, Waldhausrová J (2007) Sm–Nd isotope and trace element study of Late Proterozoic metabasalts (“spilites”) from the Central Barrandian domain (Bohemian Massif, Czech Republic). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:231–247

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:209–229

  • Pitra P, Burg JP, Schulmann K, Ledru P (1994) Late orogenic extension in the Bohemian Massif: petrostructural evidence in the Hlinsko region. Geodyn Acta 7:15–30

    Google Scholar 

  • Pitra P, Burg JP, Giraud M (1999) Late-Variscan strike-slip tectonics between the Teplá–Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. J Geol Soc London 156:1003–1020

    Article  Google Scholar 

  • Potts GJ, Reddy SM (1999) Construction and systematic assessment of relative deformation histories. J Struct Geol 21:1245–1253

    Article  Google Scholar 

  • Powell CM (1979) A morphological classification of rock cleavage. Tectonophysics 58:21–34

    Article  Google Scholar 

  • Rajlich P (1987) Variscan ductile tectonics in the Bohemian Massif. Geol Rundsch 76:755–786

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (Bohemian Massif). Int J Earth Sci 89:617–630

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. CR Geosci 341:266–286

    Article  Google Scholar 

  • Siebel W, Blaha U, Chen F, Rohrmüller J (2005) Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. Int J Earth Sci 94:8–23

    Article  Google Scholar 

  • Stampfli GM, Kozur HW (2006) Europe from the Variscan to the Alpine cycles. Geol Soc London Mem 32:57–82

    Article  Google Scholar 

  • Strnad L, Mihajlevič M (2005) Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS. Mineral Petrol 84:47–68

    Article  Google Scholar 

  • Suchý V, Dobeš P, Filip J, Stejskal M, Zeman A (2002) Conditions for veining in the Barrandian Basin (Lower Paleozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348:25–50

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London

    Google Scholar 

  • Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338

    Article  Google Scholar 

  • Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647

    Article  Google Scholar 

  • Tobisch OT, Paterson SR (1988) Analysis and interpretation of composite foliations in areas of progressive deformation. J Struct Geol 10:745–754

    Article  Google Scholar 

  • Venera Z, Schulmann K, Kröner A (2000) Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)—structure and rheological modelling. J Struct Geol 22:1437–1454

    Article  Google Scholar 

  • Verner K, Žák J, Hrouda F, Holub FV (2006) Magma emplacement during exhumation of the lower- to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. J Struct Geol 28:1553–1567

    Article  Google Scholar 

  • Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wenzel T, Mertz DF, Oberhänsli R, Becker T, Renne PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen massif (northern Bohemian massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86:556–570

    Article  Google Scholar 

  • Williams PF (1985) Multiply deformed terrains—problems of correlation. J Struct Geol 7:269–280

    Article  Google Scholar 

  • Winchester JA, PACE TMR Network Team (2002) Paleozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–22

    Article  Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. Geol Soc London Mem 32:323–332

    Article  Google Scholar 

  • Žák J, Schulmann K, Hrouda F (2005a) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822

    Article  Google Scholar 

  • Žák J, Holub FV, Verner K (2005b) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci 94:385–400

    Article  Google Scholar 

  • Žák J, Dragoun F, Verner K, Chlupáčová M, Holub FV, Kachlík V (2009) Forearc deformation and strain partitioning during growth of a continental magmatic arc: the northwestern margin of the Central Bohemian Plutonic Complex, Bohemian Massif. Tectonophysics 469:93–111

    Article  Google Scholar 

  • Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2011a) Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá–Barrandian unit, Bohemian Massif. Int J Earth Sci 100:1477–1495

    Article  Google Scholar 

  • Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011b) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40

    Article  Google Scholar 

  • Žák J, Verner K, Holub FV, Kabele P, Chlupáčová M, Halodová P (2012) Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. J Struct Geol 36:27–42

    Google Scholar 

  • Zulauf G (1994) Ductile normal faulting along the West Bohemian Shear Zone (Moldanubian/Teplá–Barrandian boundary): evidence for late Variscan extensional collapse in the Variscan Internides. Geol Rundsch 83:276–292

    Google Scholar 

  • Zulauf G (1997) From very low-grade to eclogite-facies metamorphism: tilted crustal sections as a consequence of Cadomian and Variscan orogeny in the Teplá–Barrandian unit (Bohemian Massif). Geotekt Forsch 89:1–302

    Google Scholar 

  • Zulauf G (2001) Structural style, deformation mechanisms and paleostress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Teplá–Barrandian unit, Bohemian Massif). Tectonophysics 332:211–237

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–587

    Article  Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá–Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dtsch Geol Ges 150:627–640

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Kotková J, Maluski H, Valverde-Vaquero P (2002a) Evidence for high-temperature diffusional creep preserved by rapid cooling of lower crust (North Bohemian shear zone, Czech Republic). Terra Nova 14:343–354

    Article  Google Scholar 

  • Zulauf G, Bues C, Dörr W, Vejnar Z (2002b) 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Gernold Zulauf and Jaroslav Dostal for their very constructive and detailed reviews that helped to improve the original manuscript significantly, and Associate Editor Reinhard Greiling for helpful comments on final version of the manuscript. František Hrouda and Marta Chlupáčová are thanked for providing their AMS data from the Čistá pluton. This study is part of the Ph.D. research of Jaroslava Hajná, supported by Grant No. 134908 from the Grant Agency of Charles University in Prague (GAUK) to J. Hajná, and by the Ministry of Education, Youth and Sports of the Czech Republic Research Plan No. MSM0021620855 and SVV261203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslava Hajná.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajná, J., Žák, J., Kachlík, V. et al. Deciphering the Variscan tectonothermal overprint and deformation partitioning in the Cadomian basement of the Teplá–Barrandian unit, Bohemian Massif. Int J Earth Sci (Geol Rundsch) 101, 1855–1873 (2012). https://doi.org/10.1007/s00531-012-0753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0753-8

Keywords

Navigation