International Journal of Earth Sciences

, Volume 101, Issue 5, pp 1253–1272 | Cite as

Amphibolites from the Szklarska Poręba hornfels belt, West Sudetes, SW Poland: magma genesis and implications for the break-up of Gondwana

Original Paper


Amphibolites from the Szklarska Poręba hornfels belt (northern part of the Karkonosze-Izera Massif) represent rocks of alkali-basalt composition metamorphosed during Variscan times. Despite the intense thermal influence of the Karkonosze granite superimposed on the effects of regional amphibolite-facies metamorphism, the geochemical affinities of the Szklarska Poręba amphibolites are well preserved. They are similar to alkaline OIB basalts derived from an enriched (undepleted) sub-lithospheric source in the garnet stability field at depths ca 80–120 km. Trace-element characteristics and geochemical modelling indicate that the source was not modified by metasomatism in a supra-subduction zone or by alkali (silicate, carbonatitic) infiltration. Subsequent intra-crustal fractional crystallization involved olivine and clinopyroxene, and subordinate spinel and, presumably, plagioclase. The chemical composition of the rocks is most similar to that of modern magmas generated in an extensional setting (intra-continental rift). Neither geochemical characteristics nor estimated mantle temperatures only slightly higher than those of ambient mantle convincingly attest to the involvement of deep-mantle plume activity. Instead, decompression melting of passively upwelling asthenosphere beneath opening fractures in fragmented lithosphere is invoked. The origin of the amphibolite protolith was presumably associated with the Early Palaeozoic rifting of northern Gondwana, well documented throughout the Karkonosze-Izera massif. Locally rifting must have ceased earlier (immature rift) as reflected by mafic dykes exposed in the northern part of the massif, i.e., in the Szklarska Poręba hornfelses, and by the Izera gneisses and the Stara Kamienica metapelites. A passive rift system controlled by lithosphere extension provides a plausible explanation for the origin of mafic rocks in the Karkonosze-Izera Massif and sheds light on possible mechanisms involved in the break-up of Gondwana.


Alkaline mafic rocks Trace elements Asthenosphere Intra-continental rift Hornfels belt West Sudetes 


  1. Aldanmaz E, Köprübaşi N, Gürer ÖF, Kaymakçi N, Gourgaud A (2006) Geochemical constraints of the Cenozoic, OIB-type alkaline volcanics rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86:50–76Google Scholar
  2. Aleksandrowski P, Mazur S (2002) Collage tectonics in the easternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds.): Palaeozoic Amalgamation of Central Europe. Geol Soc London Spec Publ 201:237–277Google Scholar
  3. Allegre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25Google Scholar
  4. Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33:125–149Google Scholar
  5. Anderson DL (2000) The thermal state of the upper mantle: no role for mantle plumes. Geophys Res Lett 27:3623–3626Google Scholar
  6. Bendl J, Patočka F (1995) The Rb-Sr isotope geochemistry of the metamorphosed bimodal volcanic association of the Rýchory Mts crystalline Complex, West Sudetes, Bohemian Massif. Geol Sudet 29:3–18Google Scholar
  7. Borkowska M, Hameurt J, Vidal P (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geol Polon 30:121–146Google Scholar
  8. Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale. CR Acad Sci Ser II 309:2023–2029Google Scholar
  9. Chaloupský J et al. (1989) Geologie of the Krknoše and the Jizerské hory Mts. [In Czech, with English abstract]. Ústr úst geol PrahaGoogle Scholar
  10. Campbell IH (1985) The difference between oceanic and continental tholeiites. A fluid dynamic explanation. Contrib Mineral Petrol 91:37–43Google Scholar
  11. Chab J, Vrana S (1979) Crossite-actinolite amphiboles of the Krkonoše-Jizera crystalline Complex and their geological significance. Ústr úst geol Praha 54:143–150Google Scholar
  12. Cieśliński N, Żaba J (1990) Structural position of the Variscan vein rocks in the northern contact zone of the Karkonosze massif in the vicinity of Szklarska Poręba (Western Sudetes). Geol Sudet 25:59–81 [in Polish, with English abstract]Google Scholar
  13. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308Google Scholar
  14. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen and Unwin, LondonGoogle Scholar
  15. Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180Google Scholar
  16. Dupuy C, Liotard JM, Dostal J (1992) Zr-Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim Cosmochim Acta 56:2417–2423Google Scholar
  17. Ebinger C (2005) Continental break-up: the East African perspective. Astron Geoph 46:2.16–2.21Google Scholar
  18. Ellam RM (1992) Lithospheric thickness as a control on basalt geochemistry: Geology 20:153–156Google Scholar
  19. Escuder Viruete J, Pérez-Estaún A, Weis D (2009) Geochemical constraints on the origin of the late Jurassic proto-Caribbean oceanic crust in Hispaniola. Int J Earth Sci 98:407–425Google Scholar
  20. Fitton JG (2007) The OIB paradox. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes. Geol Soc Amer Spec Pap 430:387–412Google Scholar
  21. Fitton JG, Godard M (2004) Origin and evolution of magmas on the OJP. In: Fitton JG, Mahoney JJ, Wallace PJ, Saunders AD (eds) Origin and evolution of the OJP. Geol Soc London Spec Publ 229:151–178Google Scholar
  22. Fitton JG, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997) Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett 153:197–208Google Scholar
  23. Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haack V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society of London Special Publication 179:155–174Google Scholar
  24. Franke W, Żelaźniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester JA, Pharaoh TC, Verniers J (eds.): Palaeozoic Amalgamation of Central Europe. Geol Soc London Spec Publ 201:279–293Google Scholar
  25. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from SE Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513Google Scholar
  26. Fukao Y, Obayashi M, Nakakuki T, The Deep Slab Project Group (2009) Stagnant slab: a review. Ann Rev Earth Planet Sci 37:19–46Google Scholar
  27. Gaetani GA, Asimow PD, Stolper EM (2008) A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth Planet Sci Lett 272:720–729Google Scholar
  28. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212Google Scholar
  29. Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke HU (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: A mixed-up mantle. Earth Planet Sci Lett 277:514–524Google Scholar
  30. Halliday AN, Lee DC, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395Google Scholar
  31. Hart WK, Wolde GC, Walter RC, Mertzman SA (1989) Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. J Geophys Res 94:7731–7748Google Scholar
  32. Hastie AR, Kerr AC (2010) Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth Sci Rev 98:283–293Google Scholar
  33. Hawkesworth C, Scherstén A (2007) Mantle plumes and geochemistry. Chem Geol 241:319–331Google Scholar
  34. Herzberg C (2006) Distribution and size of pyroxenite bodies in the mantle. EOS Trans Amer Geophys Union 746:Fall Meeting Supplement, Abstract U12A-04Google Scholar
  35. Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosys 9:Q09001. doi:10.1029/2008GC002057 Google Scholar
  36. Hladil J, Patočka F, Kachlík V, Melichar R, Hubačík M (2003) Metamorphosed carbonate sediments of the Krkonose Mts and Paleozoic evolution of Sudetic terranes (NE Bohemia, Czech Republic). Geol Carpath 54:281–297Google Scholar
  37. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229Google Scholar
  38. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436Google Scholar
  39. Holm PE (1985) The geochemical fingerprints of different tectonomagmatic environments using hygromagmatophile element abundances of tholeiitic basalts and basaltic andesites. Chem Geol 51:303–323Google Scholar
  40. Huppert HE, Sparks RSJ (1985) Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet Sci Lett 74:371–386Google Scholar
  41. Ilnicki S (2002a) Composition of amphibole and plagioclase in amphibolites from northern contact zone of the Karkonosze granite: a preliminary report. Pol Tow Miner Prace Spec 20:103–105Google Scholar
  42. Ilnicki S (2002b) Amphibolites and metabasites from the Izera Block, West Sudetes. Pol Tow Miner Prace Spec 20:262–269Google Scholar
  43. Ilnicki S (2010) Petrogenesis of continental mafic dykes from the Izera Complex, Karkonosze-Izera Block (West Sudetes, SW Poland). Int J Earth Sci 99:745–773Google Scholar
  44. Ilnicki S (2011) Variscan prograde and contact metamorphism in metabasites from the Sowia Dolina, Karkonosze-Izera massif (SW Poland). Min Mag 75:185–212Google Scholar
  45. Iwansson K, Landström O (2000) Contamination of rock samples by laboratory grinding mills. J Radioanal Nuclear Chem 244:609–614Google Scholar
  46. Kellogg LH, Bradford H, Hager BH, van der Hilst RD (1999) Compositional Stratification in the Deep Mantle. Science 283:1881–1884Google Scholar
  47. Keskin M, Pearce JA, Mitchell JG (1998) Volcano-stratigraphy and geochemistry of collision-related volcanism of the Erzurum-Kars Plateau, North Eastern Turkey. J Volcan Geotherm Res 85:355–404Google Scholar
  48. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 2. Applications. J Geophys Res 97:6907–6926Google Scholar
  49. Knoper MW, Condie KC (1988) Geochemistry and petrogenesis of Early Proterozoic amphibolites, West-Central Colorado, USA. Chem Geol 67:209–225Google Scholar
  50. Kozdrój W, Cymerman Z, Kachlík V, Opletal M (2001) Karkonosze-Izera Region. In: Kozdrój W, Krentz O, Opletal M (eds) Comments on the Geological map Lauzitz–Jizera–Karkonozse (without Cenozoic sediments). pp, Sächsisches Landesamt für Umwelt und Geologie/Bereich Boden und Geologie, pp 22–27Google Scholar
  51. Krienitz M-S, Haase KM, Mezger K, Eckardt V, Shaikh-Mashail MA (2006) Magma genesis and crustal contamination of continental intraplate lavas in northwestern Syria. Contrib Mineral Petrol 151:698–716Google Scholar
  52. Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše and Orlice-Snieżnik Complex). Int J Earth Sci 90:304–324Google Scholar
  53. Kryza R, Mazur S (1995) Contrasting metamorphic paths in the SE part of the Karkonosze-Izera Block (Western Sudetes, SW Poland). N Jb Mineral Abh 169:157–192Google Scholar
  54. Kryza R, Mazur S, Pin C (1995) The Leszczyniec meta-igneous Complex in the eastern part of the Karkonosze-Izera Block, Western Sudetes: trace element and Nd isotope study. N Jb Mineral Abh 170:59–74Google Scholar
  55. Kryza R, Mazur S, Aleksandrowski P, Zalasiewicz J, Sergeev S, Presnyakov S (2007) Ordovician initial-rift volcanism in the Central European Variscides (the Kaczawa Mountains, Sudetes, SW Poland): evidence from SHRIMP dating of zircons. J Geol Soc London 164:1207–1215Google Scholar
  56. La Fleche MR, Camire G, Jenner GA (1998) Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chem Geol 148:115–136Google Scholar
  57. Le Bas MJ, Le Maitre TW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Miner Petrol 48:1–22Google Scholar
  58. Leat PT, Thompson RN, Morrison MA, Hendry GL, Dickin AP (1988) Compositionally-diverse Miocene-Recent rift related magmatism in northwest Colorado: partial melting, and mixing of mafic magmas from 3 different asthenospheric and lithospheric mantle sources. In: Cox KG, Menzies MA (eds), Oceanic and continental lithosphere: similarities and differences. J Petrol Spec Vol 331–349Google Scholar
  59. Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record: Int J Earth Sci 93:683–705Google Scholar
  60. Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian orogney and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian zones, Iberian and Bohemian massifs). Tectonophysics 461:21–43Google Scholar
  61. Mazur S, Aleksandrowski P (2001) The Teplá(?)/Saxothuringian suture in the Karkonosze-Izera massif, Western Sudetes, Central European Variscides. Int J Earth Sci 90:341–360Google Scholar
  62. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50:89–118Google Scholar
  63. Mazur S, Aleksandrowski P, Turniak K, Awdankiewicz M (2007) Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes–an overview. In: Kozłowski A, Wiszniewska J (Eds.), Granitoids in Poland. Arch Miner Monograph 1:59–87Google Scholar
  64. McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374Google Scholar
  65. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679Google Scholar
  66. McKenzie DP, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091Google Scholar
  67. McKenzie DP, O’nions RK (1995) The source regions of ocean island basalts. J Petrol 36:133–159Google Scholar
  68. Menzies MA, Kempton PD, Dungan MA (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, USA. J Petrol 26:663–693Google Scholar
  69. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218Google Scholar
  70. Mierzejewski M, Oberc-Dziedzic T (1990) The Izera-Karkonosze Block and its tectonic development (Sudetes, Poland). N Jb Mineral Abh 179:197–222Google Scholar
  71. Nance RD, Linnemann U (2008) The Rheic Ocean: origin, evolution and significance. GSA Today 18:4–12Google Scholar
  72. Nielsen R (2010) GERM partition coefficient (Kd) database.
  73. Oberc-Dziedzic T, Pin C, Kryza R (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. Int J Earth Sci 94:354–368Google Scholar
  74. Oberc-Dziedzic T, Kryza R, Pin C, Mochnacka K, Larionov A (2009) The orthogneiss and schist complex of the Karkonosze-Izera massif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24Google Scholar
  75. Oberc-Dziedzic T, Kryza R, Mochnacka K, Larionov A (2010) Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. Int J Earth Sci 99:27–46Google Scholar
  76. Oliver G, Corfu F, Krogh T (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J Geol Soc London 150:355–369Google Scholar
  77. Patočka F, Smulikowski W (2000) Early Palaeozoic intracontinental rifting and incipient oceanic spreading in the Czech/Polish East Krkonoše/Karkonosze Complex, West Sudetes (NE Bohemian Massif). Geol Sudet 33:1–15Google Scholar
  78. Patočka F, Fajst M, Kachlík V (2000) Mafic-felsic to mafic-ultramafic Early Palaeozoic magmatism of the West Sudetes (NE Bohemian Massif): the South Krkonoše Complex. Z Geol Wiss 28:177–210Google Scholar
  79. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R (ed) Andesites: orogenic andesites and related rocks. Wiley, Chichester, pp 525–548Google Scholar
  80. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48Google Scholar
  81. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300Google Scholar
  82. Pearce JA, Norry M (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47Google Scholar
  83. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285Google Scholar
  84. Pin C, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196Google Scholar
  85. Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrova J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Kraft P, Nance D, Zulauf G (eds) The Geology of Peri-Gondwana: Avalonian-Cadomian terranes, adjoining cratons, and the Rheic Ocean, vol 423. Geological Society of America Special Publication, Boulder, pp 209–230Google Scholar
  86. Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403Google Scholar
  87. Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206Google Scholar
  88. Robinson JA, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284Google Scholar
  89. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise on Geochemistry 3:1–64Google Scholar
  90. Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475Google Scholar
  91. Rudnick RL, Barth MG, Horn I, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–281Google Scholar
  92. Sears JW, George GMS, Winne JC (2005) Continental rift systems and anorogenic magmatism. Lithos 80:147–154Google Scholar
  93. Seston R, Winchester JA, Piasecki MAJ, Crowley QF, Floyd PA (2000) A structural model for the western-central Sudetes: a deformed stack of Variscan thrust sheets J Geol Soc London 157:1155–1167Google Scholar
  94. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243Google Scholar
  95. Shervais JW (1982) Ti-V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118Google Scholar
  96. Smith AD (2009) The fate of subducted oceanic crust and the origin of intraplate volcanism. In: Anderson JE, Coates RW (eds) The lithosphere. Geochem Geol Geophys. 123–140Google Scholar
  97. Späth A, le Roex AP, Opiyo-Akech N (2001) Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism—the Chyulu Hills volcanic province, southern Kenya. J Petrol 42:765–787Google Scholar
  98. Staudigel H, Plank T, White B, Schmincke HC (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. Geophysical Monograph 96:19–38Google Scholar
  99. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositon and processes. In: Saunders AD, Norry MJ (eds): Magmatism in ocean basins. Geol Soc London Spec Publ 42:313–345Google Scholar
  100. Sun SS, Nesbitt RW (1978) Petrogenesis of Archean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Mineral Petrol 65:301–325Google Scholar
  101. Tait J, Bachtadse V, Franke W, Soffel H (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598Google Scholar
  102. Thompson RN, Morrison MA (1988) Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: an example from the British tertiary province. Chem Geol 68:1–15Google Scholar
  103. Timmermann H, Parrish RH, Noble SR, Kryza R, Patočka F (1999) Single cycle Variscan orogeny inferred from new U-(Th)-Pb data from the Sudetes mountains in Poland and the Czech Republic. Abstracts of the PACE mid-term review and 4th PACE network meeting. Geological Institute, University of Copenhagen, Denmark 24Google Scholar
  104. Verma SP, Guevara M, Agrawal S (2006) Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. J Earth Sys Sci 115:485–528Google Scholar
  105. Watson S, McKenzie D (1991) Melt generation by plumes: a study of Hawaiian volcanism. J Petrol 32:501–537Google Scholar
  106. Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397Google Scholar
  107. White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729Google Scholar
  108. Wilson M (1993) Igneous petrogenesis: a global tectonic approach. Chapman and Hall, London 466 pGoogle Scholar
  109. Winchester JA (1984) Element mobility associated with symetamorphic shear zones near Scotchport, NW Mayo, Ireland. J Metam Geol 2:1–11Google Scholar
  110. Winchester JA, Floyd PA (1977) Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469Google Scholar
  111. Winchester JA, PACE TMR Network Team (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophys 360:5–21Google Scholar
  112. Winchester JA, Floyd PA, Chocyk M, Horbowy K, Kozdrój W (1995) Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. J Geol Soc London 152:105–115Google Scholar
  113. Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crust contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30Google Scholar
  114. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72Google Scholar
  115. Żaba J (1985) Progressive regional metamorphism of the Izera Block, Western Sudetes (Poland). Acta Univer Carol Geol 1:63–88Google Scholar
  116. Żelaźniewicz A, Nowak I, Achramowicz S, Czapliński W (2003) The northern part of the Izera-Karkonosze Block: a passive margin of the Saxothuringian terrane. In: Ciężkowski A, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocław, pp 17–32 [In Polish, with English abstract]Google Scholar
  117. Żelaźniewicz A, Manning CM, Achramowicz S (2009) Refining the granite and schist interrelationships within Lusatian-Izera Massif, West Sudetes, using SHRIMP U-Pb zircon analyses and new geologic data. Geol Sudet 41:67–84Google Scholar
  118. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571Google Scholar
  119. Zou HB, Zindler A (1996) Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta 60:711–717Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Geochemistry, Mineralogy and Petrology, Faculty of GeologyUniversity of WarsawWarszawaPoland

Personalised recommendations