The significance of Late Devonian ophiolites in the Variscan orogen: a record from the Vosges Klippen Belt

Abstract

The present work examines the lithological, structural, geochemical and geochronological records from the Klippen Belt located in the southern Vosges Mountains (NE France). The Klippen Belt is represented by discontinuous exposures of serpentinized harzburgite, ophicalcite, gabbro, gneiss and polymictic conglomerate overlain by deep marine pelitic sediments. Structural data and Bouguer anomalies reveal that the Klippen Belt coincides with a significant discontinuity now occupied by a granitic ridge. Gabbro geochemistry indicates a MOR-type affinity similar to recent slow-spreading ridges, but positive Ba, Sr, Th or U anomalies do not exclude the influence of fluids expelled from a subduction zone. A Sm–Nd isochron age of 372 ± 18 Ma is thought to reflect gabbro emplacement from a highly depleted mantle source (εNd = +11.3), and U–Pb zircon ages from a gneiss sample indicate that the basement found in the Klippen has a Neoproterozoic origin. Combined data indicate the formation of a deep basin during Late Devonian rifting. The Klippen lithologies could testify for the presence of an ocean–continent transition environment subsequently inverted during the Early Carboniferous. Basin inversion during the Middle Visean was probably controlled by rift-related structures, and resulted in folding of the sedimentary successions as well as exhumation along thrust zones of deep parts of the basin represented by the Klippen Belt. Based on correlations with the neighbouring Variscan massifs, it is proposed that the southern Vosges sequences represent a back-arc basin related to the North-directed subduction of the southern Palaeotethys Ocean. This geodynamic reconstruction is tentatively correlated with similar ophiolitic remnants in the northern part of the French Massif Central (Brévenne) and with the evolution of the southern Black Forest. The Late Devonian ophiolites are interpreted as relicts of small back-arc marginal basins developed during general closure of the Palaeozoic subduction systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Article  Google Scholar 

  2. Arevalo RJ, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85

    Article  Google Scholar 

  3. Asselberghs E (1926) Sur l’existence du Famennien (Néodévonien) à Chagey (Belfort). Bulletin de la Société Géologique de France 26:67–74

    Google Scholar 

  4. Auzende J-M, Boespflug X, Bougault H, Dosso L, Foucher J-P, Joron J-L, Ruellan E, Sibuet J-C (1990) From intracratonic extension to mature spreading in back arc basins: examples from the Okinawa, Lau and Noth Fiji basins. Oceanol Acta 10:153–163

    Google Scholar 

  5. Azor A, Rubatto D, Simancas JF, González Lodeiro F, Martínez Poyatos D, Martín Parra LM, Matas J (2008) Rheic Ocean ophiolitic remnants in southern Iberia questioned by SHRIMP U–Pb zircon ages on the Beja-Acebuches amphibolites. Tectonics 27:TC5006

  6. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Géoscience 341:174–201

    Article  Google Scholar 

  7. Behr HJ, Engel W, Franke W, Giese P, Weber K (1984) The Variscan Belt in Central Europe: main structures, geodynamic implications, open questions. Tectonophysics 109:15–40

    Article  Google Scholar 

  8. Beltrando M, Rubatto D, Manatschal G (2010) From passive margins to orogens: the link between ocean-continent transition zones and (ultra)high-pressure metamorphism. Geology 38:559–562

    Article  Google Scholar 

  9. Boutin R, Montigny R, Thuizat R (1995) Chronologie K-Ar et 39Ar/40Ar du métamorphisme et du magmatisme des Vosges. Comparaison avec les massifs varisques avoisinants. Géologie de la France 1:3–25

    Google Scholar 

  10. Bowes DR, Aftalion M (1991) U–Pb isotopic evidence for early Ordovician and Late Proterozoic units in the Mariánské Lázně Complex, Central European Hercynides. Neues Jahrbuch für Mineralogie Abhandlungen 7:315–326

    Google Scholar 

  11. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  12. Cannat M, Chatin F, Whitechurch H, Ceuleneer G (1997) Gabbroic rocks trapped in the upper mantle at Mid Atlantic ridge. Proc Ocean Drill Prog Sci Results 153:243–264

    Google Scholar 

  13. Chevillard MJL (1866) Trilobites du Dévonien du Mont de la Revenue, commune de Chagey, près Héricourt (Haute-Saône). Bulletin de la Société Géologique de France 24:124–129

    Google Scholar 

  14. Clark AH, Scott DJ, Sandeman HA, Bromley AV, Farrar E (1998) Siegenian generation of the Lizard ophiolite: U–Pb zircon age data for plagiogranite, Porthkerris, Cornwall. J Geol Soc Lond 155:595–598

    Article  Google Scholar 

  15. Cocherie A, Robert M (2008) Laser ablation coupled with ICP-MS applied to U–Pb zircon geochronology: a review of recent advances. Gondwana Res 14:597–608

    Article  Google Scholar 

  16. Cocherie A, Fanning CM, Jezequel P, Robert M (2009) LA-MC-ICPMS and multi-ion counting system, and SHRIMP U–Pb dating of complex zircons from quaternary tephras from the French Massif Central: magma residence time and geochemical implications. Geochim Cosmochim Acta 73:1095–1108

    Article  Google Scholar 

  17. Coleman RG (1977) Ophiolites: ancient oceanic lithosphere? Springer, Berlin, p 229

  18. Cook CA, Holdworth RE, Styles MT (2002) The emplacement of peridotites and associated oceanic rocks from the Lizard Complex, southwest England. Geol Mag 139:27–45

    Article  Google Scholar 

  19. Corsin P, Mattauer M (1957) Quelques nouveaux gisements fossilifères du Massif des Ballons (Vosges méridionales). Comptes rendus sommaires de la Société Géologique de France 5:92–94

    Google Scholar 

  20. Corsin P, Ruhland M (1959) Les gisements à plantes du Viséen dans les Vosges méridionales. Comptes Rendus de l’Académie des Sciences 248:2145–2149

    Google Scholar 

  21. Coulon M, Fourquin C, Paicheler JC, Conil R, Lys M (1978) Stratigraphie du Viséen des Vosges méridionales et datations obtenues par l’étude de plusieurs niveaux à microfaunes et algues. Sciences Géologiques 31:77–93

    Google Scholar 

  22. Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorica Terrane Assemblage. Terra Nova 12:171–180

    Article  Google Scholar 

  23. Currie CA, Huismans RS, Beaumont C (2008) Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet Sci Lett 269:436–447

    Article  Google Scholar 

  24. Davies GR (1984) Isotopic evolution of the lizard complex. J Geol Soc Lond 141:3–14

    Article  Google Scholar 

  25. Davis GH, Hardy JJ (1981) The Eagle Pass detachment, southeastern Arizona: product of mid-Miocene listric normal faulting in the southern Basin and Range. Geol Soc Am Bull 92:749–762

    Article  Google Scholar 

  26. Delbos J, Kœchlin-Schlumberger J (1866) Description géologique et minéralogique du département du Haut-Rhin, vol 1

  27. Delesse A (1847) Mémoire sur la constitution minéralogique et chimique des roches des Vosges

  28. Doubinger J, Ruhland M (1963) Découverte d’une faune de Chitinozoaires d’âge Dévonien au Treh (région du Markstein, Vosges méridionales). Comptes Rendus de l’Académie des Sciences 256:2894–2896

    Google Scholar 

  29. Dvořák J (1995) Moravo-Silesian Zone: Autochton—Stratigraphy. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of Central and Western Europe

  30. Edel J-B, Schulman K (2009) Geophysical constraints and model of the “Saxothuringian and Rhenohercynian subductions–magmatic arc system” in NE France and SW Germany. Bulletin de la Société Géologique de France 180:545–558

    Article  Google Scholar 

  31. Falk F, Franke W, Kurze M (1995) Saxothuringian Basin: Autochton and Nonmetamorphic Nappe Units—stratigraphy, structure, and igneous activity. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of Central and Western Europe

  32. Finger F, Steyrer HP (1990) I-type granitoids as indicators of a late Paleozoic convergent ocean-continent margin along the southern flank of the central European Variscan orogen. Geology 18:1207–1210

    Article  Google Scholar 

  33. Floyd PA (1984) Geochemical characteristics and comparison of the basic rocks of the Lizard Complex and the basaltic lavas within the Hercynian troughs of SW England. J Geol Soc Lond 141:61–70

    Article  Google Scholar 

  34. Floyd PA (1995) Rhenohercynian Foldbelt: autochton and nonmetamorphic nappe units—igneous activity. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of Central and Western Europe

  35. Floyd PA SEC, Styles MT (1993) Igneous rocks of South-West England. Geological conservation review series. Chapman and Hall, London

    Google Scholar 

  36. Fluck P (1987) Apports de la “microcartographie” à divers points-clés de la géologie du socle vosgien. In: Colloque des Géologues et Géophysiciens du Socle Vosgien, Strasbourg, 7–11 October 1987, pp 11–14

  37. Franke W (1984) Variszischer Deckenbau im Raume der Münchberger Gneismasse, abgeleitet aus der Fazies, Deformation und Metamorphose im umgebenden Paläozoikum. Geotektonische Forschungen 68:1–253

    Google Scholar 

  38. Franke W (1995) Rhenohercynian Foldbelt: autochton and nonmetamorphic nappe units—stratigraphy. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of Central and Western Europe

  39. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and kinematic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, special publications, 179:35–63

  40. Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108:1120–1133

    Article  Google Scholar 

  41. Gagny C (1962) Caractères sédimentologiques et pétrographiques des schistes et grauwackes du Culm dans les Vosges méridionales. Bulletin du Service de la Carte Géologique d’Alsace-Lorraine 15:139–160

    Google Scholar 

  42. Ganssloser M, Theye T, Wachendorf H (1996) Detrital glaucophane in graywackes of the Rhenohercynian Harz mountains and the geodynamic implications. Geol Rundsch 85:755–760

    Article  Google Scholar 

  43. Gradstein F, Ogg J, Smith A (2004) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  44. Guillot S, Ménot R-P (2009) Paleozoic evolution of the external crystalline massifs of the Western Alps. Comptes Rendus Géoscience 341:253–265

    Article  Google Scholar 

  45. Hammel C (1996) Une faune nouvelle de trilobites (Brachymetopus, Namuropyge) dans le Viséen des Vosges du Sud. Conséquences stratigraphiques et paléoécologiques. Géobios 29:745–755

    Article  Google Scholar 

  46. Hann HP, Sawatzki G (1998) Deckenbau und Sedimentationsalter im Grundgebirge des Südschwarzwalds/SW-Deutschland. Zeitschrift der deutschen geologischen Gesellschaft 149:183–195

    Google Scholar 

  47. Hann HP, Chen F, Zedler H, Frisch W, Loeschke J (2003) The Rand Granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci 92:821–842

    Article  Google Scholar 

  48. Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. J Geol Soc 158:137–150

    Article  Google Scholar 

  49. Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184

    Article  Google Scholar 

  50. Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Cejchan P, Orel P (1999) The devonian in the Easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abhandlungen der geologischen Bundesanstalt 54:27–47

    Google Scholar 

  51. Holder MT, Leveridge BE (1986) A model for the tectonic evolution of South Cornwall. J Geol Soc Lond 143:125–134

    Article  Google Scholar 

  52. Hollister LH (1986) Melt-enhanced deformation: a major tectonic process. Geology 14:558–561

    Article  Google Scholar 

  53. Janoušek V, Hanžl P, Aichler J, Pecina V, Erban V, Wilimský D, Žáček V, Mixa P, Buriánková K, Pudilová M, Chlupáčová M (2006) Contrasting petrogenesis of two volcanic suites in the devonian Vrbno group (Hrubý Jeseník Mts., Czech Republic). Geolines 20:57–59

    Google Scholar 

  54. Jung J (1928) Contribution à la géologie des Vosges hercyniennes d’Alsace. Mémoires du Service de la Carte géologique d’Alsace-Lorraine, vol 2, p 463

  55. Kalt A, Hanel M, Schleicher H, Kramm U (1994) Petrology and geochronology of eclogites from the Variscan Schwarzwald (F.R.G.). Contrib Mineral Petrol 115:287–302

    Article  Google Scholar 

  56. Kam M (1983) Etude pétrologique et géochimique de la «ligne des klippes» (Vosges méridionales). Mémoire de DEA, Université Louis Pasteur, Strasbourg

    Google Scholar 

  57. Kratinová Z, Schulmann K, Edel J-B, Ježek J (2007) Model of successive granite sheet emplacement in transtensional setting: integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics 26:TC6003

    Google Scholar 

  58. Krecher M, Behrmann JH (2007) Tectonics of the Vosges (NE France) and the Schwarzwald (SW Germany): evidence from Devonian-Carboniferous active margin basins and their deformation. Geotectonic Res 95:61–86

    Article  Google Scholar 

  59. Krecher M, Behrmann JH, Müller-Sigmund H (2007) Sedimentology and tectonic setting of Devonian-Carboniferous turbidites and debris flow deposits in the Variscan Vosges Mountains (Markstein Group, NE-France). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 158:1063–1087

    Article  Google Scholar 

  60. Kretz R (1983) Symbols for rock forming minerals. Am Mineral 68:277–279

    Google Scholar 

  61. Lardeaux JM, Ledru P, Daniel I, Duchene S (2001) The Variscan French Massif Central - a new addition to the ultrahigh pressure metamorphic ‘club’: exhumation processes and geodynamic consequences. Tectonophysics 332:143–167

    Article  Google Scholar 

  62. Leloix C, Faure M, Feybesse J-L (1999) Hercynian polyphase tectonics in the northeast French Massif Central: the closure of the Brévenne Devonian–Dinantian rift. Int J Earth Sci 88:409–421

    Article  Google Scholar 

  63. Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): in search of a genetic model. Geology 15:622–625

    Article  Google Scholar 

  64. Leveridge BE, Hartley AJ (2006) The Variscan Orogeny: the development and deformation of Devonian/Carboniferous basins in SW England and South Wales. In: Brenchley PJ, Rawson PF (eds) The geology of England and Wales. Geological Society, London, pp 225–255

    Google Scholar 

  65. Linck G (1892) Geognotische Beschreibung des Thalhorn im oberen Amariner Thal. Mittheilungen der geologischen Landesanstalt von Elsass—Lothringen IV:1–72

  66. Loeschke J, Güldenpfennig M, Hann HP, Sawatzki G (1998) Die Zone von Badenweiler-Lenzkirch (Schwarzwald): Eine variskische Suturzone. Zeitschrift der deutschen geologischen Gesellschaft 149:197–212

    Google Scholar 

  67. Ludwig KR (2004) Users manual for ISOPLOT/EX, version3.1. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 4

  68. Maass R, Stoppel D (1982) Nachweis von Oberdevon bei Markstein (Bl. Munster, Südvogesen). Zeitschrift der Deutschen Geologischen Gesellschaft 133:403–408

    Google Scholar 

  69. Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19

    Article  Google Scholar 

  70. Massone H, Schreyer W (1983) A new experimental phengite barometer and its application to a Variscan subduction zone at the southern margin of the Rhenohercynicum. Terra Cognita 3:197

    Google Scholar 

  71. Matte P (1986) Tectonics and plate tectonics model for the Variscan Belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  72. Matte P (1998) Continental subduction and exhumation of HP rocks in Paleozoic orogenic belts: Uralides and Variscides. Geol Soc Sweden (GFF) 120:209–222

    Google Scholar 

  73. Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128

    Article  Google Scholar 

  74. Montenari M, Leppig U, Weyer D (2002) Heterocorallia from the Early Carboniferous of the Moldanubian Southern Vosges Mountains (Alsace, France). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 224:223–254

    Google Scholar 

  75. Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002) Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. Proc Ocean Drill Prog Sci Results 176:1–56

    Google Scholar 

  76. Oncken O, von Winterfeld C, Dittmar U (1999) Accretion of a rifted passive margin: the Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tectonics 18:75–91

    Article  Google Scholar 

  77. Paquette J-L, Ménot R-P, Peucat J–J (1989) REE, Sm–Nd and U–Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): evidence for crustal contamination. Earth Planet Sci Lett 96:181–198

    Article  Google Scholar 

  78. Patočka F, Valenta J (1996) Geochemistry of the late Devonian intermediate to acid metavolcanic rocks from the southern part of the Vrbno Group in the Jeseníky Mts. (Moravo-Silesian Belt, Bohemian Massif, Czech Republic): paleotectonic implications. Geolines 4:42–54

    Google Scholar 

  79. Petrini K, Burg JP (1998) Relationships between deformation, plutonism and regional metamorphism in the Markstein area (southern Vosges). Géologie de la France 2:13–23

    Google Scholar 

  80. Pin C (1990) Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177:215–227

    Article  Google Scholar 

  81. Pin C, Carme F (1988) Ecailles de matériaux d’origine océanique dans le charriage hercynien de la «Ligne des Klippes», Vosges méridionales (NE France). Comptes Rendus de l’Académie des Sciences 306:217–222

    Google Scholar 

  82. Pin C, Paquette J-L (1997) A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France). Contrib Mineral Petrol 129:222–238

    Article  Google Scholar 

  83. Pin C, Fonseca PE, Paquette J-L, Castro P, Matte P (2008) The ca. 350 Ma Beja Igneous Complex: A record of transcurrent slab break-off in the Southern Iberia Variscan Belt? Tectonophysics 461:356–377

    Article  Google Scholar 

  84. Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican Massif, France). J Metamorph Geol 28:183–208

    Article  Google Scholar 

  85. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  86. Rey P, Burg JP, Caron JM (1992) Middle and late carboniferous extension in the Variscan Belt: structural evidences from the Vosges massif (Eastern France). Geodin Acta 5:17–36

    Google Scholar 

  87. Ribeiro A, Munhá J, Fonseca PE, Araújo A, Pedro JC, Mateus A, Tassinari C, Machado G, Jesus A (2010) Variscan ophiolite belts in the Ossa-Morena Zone (Southwest Iberia): geological characterization and geodynamic significance. Gondwana Res 17:408–421

    Article  Google Scholar 

  88. Richard P, Shimizu N, Allegre CJ (1976) 143Nd/146Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278

    Article  Google Scholar 

  89. Roberts S, Andrews JR, Bull JM, Sanderson DJ (1993) Slow-spreading ridge-axis tectonics: evidence from the Lizard Complex. U K Earth Planet Sci Lett 116:101–112

    Article  Google Scholar 

  90. Ruhland M (1958) Allure des plis et plis à axes subverticaux dans les terrains primaires des Vosges méridionales. Bulletin du Service de la Carte Géologique d’Alsace-Lorraine 11:45–50

    Google Scholar 

  91. Schaltegger U, Schneider J-L, Maurin J-C, Corfu F (1996) Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth Planet Sci Lett 144:403–419

    Article  Google Scholar 

  92. Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U–Pb isotope, cathodoluminiscence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    Article  Google Scholar 

  93. Schneider J-L (1990) Enregistrement de la dynamique varisque dans les bassins volcano-sédimentaires dévono-dinantiens: exemple des Vosges du Sud (zone moldanubienne). Thèse de doctorat, Université de Strasbourg, 222 p

  94. Schneider J-L, Hassenforder B, Paicheler J-C (1990) Une ou plusieurs «Ligne des Klippes» dans les Vosges du Sud (France)? Nouvelles données sur la nature des «klippes» et leur signification dans la dynamique varisque. Comptes Rendus de l’Académie des Sciences 311:1221–1226

    Google Scholar 

  95. Schulmann K, Schaltegger U, Ježek J, Thompson AB, Edel JB (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in Western Europe). Am J Sci 302:856–879

    Article  Google Scholar 

  96. Schulmann K, Edel J-B, Hasalová P, Cosgrove J, Ježek J, Lexa O (2009) Influence of melt induced mechanical anisotropy on the magnetic fabrics and rheology of deforming migmatites, Central Vosges, France. J Struct Geol 31:1223–1237

    Article  Google Scholar 

  97. Shail RK, Leveridge BE (2009) The Rhenohercynian passive margin of SW England: development, inversion and extensional reactivation. Comptes Rendus Géoscience 341:140–155

    Article  Google Scholar 

  98. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  99. Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  100. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry M (eds) Magmatism in the ocean basins, vol 42. Geological Society Special Publications, London, pp 313–345

    Google Scholar 

  101. Tait J, Schätz M, Bachtadse V, Soffel H (2000) Paleomagnetism and Palaeozoic palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and Modelling in the Variscan Belt, special publications, vol 179, pp 21–34

  102. Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338

    Article  Google Scholar 

  103. Tricart P, Lemoine M (1983) Serpentinite oceanic bottom in South Queyras ophiolites (French western Alps): record of the incipient oceanic opening of the Mesozoic Ligurian Tethys. Eclogae Geologicae Helvetiae 76:611–629

    Google Scholar 

  104. Vogt C (1981) Benthonische Klein-Foraminiferen aus dem Unter-Karbon der Südvogesen. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 6:363–384

    Google Scholar 

  105. von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean—early palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20

    Article  Google Scholar 

  106. von Seidlitz W (1914) Leitlinien varistischer Tektonik im Schwarzwald und in den Vogesen. Zeitschrift der Deutschen Geologischen Gesellschaft 66:100–124

    Google Scholar 

  107. Weigand B (1875) Die Serpentine der Vogesen. Mineralogische Mittheilungen 3:183–206

    Google Scholar 

  108. Wickert F, Eisbacher GH (1988) Two-sided Variscan thrust tectonics in the Vosges Mountains, northeastern France. Geodinamica Acta 2:101–120

    Google Scholar 

  109. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newslett 19:1–23

    Article  Google Scholar 

  110. Wilson RCL, Manatschal G, Wise S (2001) Rifting along non-volcanic passive margins: stratigraphic and seismic evidence from the Mesozoic successions of the Alps and western Iberia. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-volcanic rifting of continental margins: a comparison of evidence from land and sea. Geological Society Special Publications, vol 187, pp 429–452

  111. Zeh A, Brätz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and SmNd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: evidence for norther Gondwanan and Greenvillian provenance. J Geol Soc Lond 158:983–994

    Article  Google Scholar 

  112. Ziegler PA (1986) Geodynamic model for the palaeozoic crustal consolidation of Western and Central Europe. Tectonophysics 126:303–328

    Article  Google Scholar 

Download references

Acknowledgments

E.S. and A-S.T. kindly acknowledge funding by BRGM and Région Alsace. Field work was supported by the ‘Programme de la carte géologique de France’. A. Aubert is thanked for help during zircon separation, D. Guinamant for assistance with the zircon mounts, P. Pepin for cutting large samples, M. Robert for LA-ICP-MS analyses, G. Morvan for producing CL images and G. Wille for help with the microprobe. Access to the bibliography was possible thanks to the outstanding collection held at the University of Strasbourg, and the careful work of the person in charge B. Kieffer. We are indebted to J. Honnorez for sharp comments on the manuscript. Reviews by J.R. Martínez Catalán and G. Eisbacher are greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Skrzypek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skrzypek, E., Tabaud, AS., Edel, JB. et al. The significance of Late Devonian ophiolites in the Variscan orogen: a record from the Vosges Klippen Belt. Int J Earth Sci (Geol Rundsch) 101, 951–972 (2012). https://doi.org/10.1007/s00531-011-0709-4

Download citation

Keywords

  • Variscan orogeny
  • Devonian ophiolites
  • Palaeozoic oceans
  • Klippen Belt
  • Vosges Mountains