Advertisement

International Journal of Earth Sciences

, Volume 101, Issue 4, pp 1047–1063 | Cite as

Miocene to recent alkaline volcanism between Al Haruj and Waw an Namous (southern Libya)

  • Jacques-Marie Bardintzeff
  • Catherine Deniel
  • Hervé Guillou
  • Bernard Platevoet
  • Philippe Télouk
  • Khaled M. Oun
Original Paper

Abstract

Unspiked K–Ar ages, petrological, geochemical and isotopic data are reported on samples from southern Libya (Wan an Namous—Al Haruj area). The Wan an Namous intracaldera cone dated at 0.2 Ma consists of unusually undersaturated foidite, representing the most extreme compositions among Libyan and Tibestian lavas. A basanitic and a basaltic lava flow located north-west of Wan an Namous, and probably belonging to the Al Haruj volcanic field, were dated at 5.1 Ma and 8.1 Ma. These data extend the range of ages previously reported for Al Haruj lavas. REE and multi-element patterns are typical of alkaline intraplate magmas. Sr ratios range from 0.70314 to 0.70812, whereas Nd ratios are very homogeneous (0.51290–0.51293). Pb ratios (19.231 < 206Pb/204Pb < 19.547, 15.607 < 207Pb/204Pb < 15.641 and 38.859 < 208Pb/204Pb < 39.242) are typical of HIMU-FOZO compositions. Such isotope characteristics are very similar to those available on two Gharyan (northern Libya) lavas and largely overlap those of Hoggar and Cameroon Line alkaline rocks. These lavas were produced by low and variable degrees of partial melting of a garnet- and amphibole-bearing mantle source, constraining the depth of melting between 80 and 150 km. Crustal contamination was also probably involved for the oldest sample. Mineral compositions of a dunite–harzburgite xenolith clearly indicate that the lithospheric mantle was affected by partial melting and metasomatic processes by magmatic liquids, probably associated with the genesis of Cenozoic lavas. Lithospheric delamination and asthenospheric upwelling, due to the reactivation of lithospheric megastructures induced by the Africa-Europe convergence, could represent a model for the genesis of Libyan lavas, as in Hoggar.

Keywords

Waw an Namous Al Haruj Libya Ages Whole rock and mineral geochemistry Isotopes Mantle 

Notes

Acknowledgments

JMB warmly thanks the logistic help of Libyan officials during his short stay in Libya. F. Pothé, chairman of Terra Incognita, is thanked for providing sample W9, L. Daumas for drawing figures and I. Vlastélic for including the three Pb separates in his set of analyses on the MC-ICPMS. J. Marin kindly duplicated the Na2O measurement for W3. A. Azzouni, J. Bébien, S. Blancher, B. Bonin, G. Delpech, S. M. Muhongo, M. L. Pascal, R. Pichon and P. M. Vincent are thanked for useful remarks. Careful reviews by G. Franz and an anonymous reviewer greatly helped to improve this paper. We also thank C. Breitkreuz for valuable suggestions and editorial handling of the manuscript.

Supplementary material

531_2011_708_MOESM1_ESM.xls (38 kb)
Table A. Selected microprobe analyses of olivine. Calculation on the basis of 3 cations. c: core, r: rim (XLS 38 kb)
531_2011_708_MOESM2_ESM.xls (46 kb)
Table B. Selected microprobe analyses of pyroxene. Clinopyroxene, except analyses 13 and 69 in W9 (orthopyroxene). Calculation on the basis of 16 cations. c: core, r: rim. Calculated Fe3+, Fe2+, FeO, Fe2O3; Enstatite (Mg mole %), Ferrosilite (Fe2+ + Fe3+ mole %) and Wollastonite (Ca mole %) components. Components in mole %, following the sequence of Lindsley (1983). (XLS 46 kb)
531_2011_708_MOESM3_ESM.xls (40 kb)
Table C. Selected microprobe analyses of Fe–Ti oxides. Ti-magnetite except analyses 158, 57 and 19 (spinel). Calculation on the basis of 24 cations, and recalculated Fe3+ and Fe2+ contents. (XLS 39 kb)
531_2011_708_MOESM4_ESM.xls (39 kb)
Table D. Selected microprobe analyses of feldspathoids and feldpar. c: core, r: rim. Analyses 190, 60 and 56: nepheline with calculation on the basis of 24 cations. Ne-Ks-Qz (wt.%) calculated considering an excess of Si over Na + K (analysis 56: Si-rich nepheline, see text). Analysis 41: sodalite with the number of ions calculated on the basis of 21 O in the 3Al2O3.6SiO2 framework. Analyses 58–46: plagioclase with calculation on the basis of 5 cations. (XLS 39 kb)
531_2011_708_MOESM5_ESM.xls (34 kb)
Table E. Selected microprobe analyses of glass (XLS 34 kb)

References

  1. Ackert RA, Singer B, Guillou H, Kaplan MR, Kurz MD (2003) Cosmogenic 3He production rates from 40Ar/39Ar and K-Ar dated Patagonian lava flows at 47°S. Earth Planet Sci Lett 210:119–136CrossRefGoogle Scholar
  2. Ade-Hall FM, Reynolds PH, Dagley P, Musset AG, Hubbard TB, Klitzsch E (1974) Geophysical studies of North African Cenozoic volcanic areas Al-Haruj Assuad, Libya. Can J Earth Sci 11:998–1006CrossRefGoogle Scholar
  3. Ade-Hall FM, Reynolds PH, Dagley P, Musset AG, Hubbard TB (1975) Geophysical studies of North African Cenozoic volcanic areas: II. Jebel Soda, Libya. Can J Earth Sci 12:1257–1263CrossRefGoogle Scholar
  4. Aït-Hamou F, Dautria JM, Cantagrel JM, Dostal J, Briqueu L (2000) Nouvelles données géochronologiques et isotopiques sur le volcanisme cénozoïque de l’Ahaggar (Sahara algérien): des arguments en faveur de l’existence d’un panache. C R Acad Sci Paris IIa 330(12):829–836Google Scholar
  5. Almond DC, Busrewil MT, Wadsworth WJ (1974) The Ghirian volcanic province of Tripolitania, Libya. Libya Geol J 9:17–28CrossRefGoogle Scholar
  6. Asran AMH, Aboazom AS (2004) CRZ Al-Haruj tertiary basalts, Libya: petrological and geochemical approach. In: Proceedings of the 6th international conference on the geology of the Arab World (GAW6)Google Scholar
  7. Bardintzeff JM, Barois P (2006) Libye: volcan Waw an Namous. Géochronique 98:14Google Scholar
  8. Barois P, Bardintzeff JM (2006) Le Waw An Namous (Libye). Bull LAVE 121:13–14Google Scholar
  9. Basu AR (1978) Trace elements and Sr isotopes in some mantle-derived hydrous minerals and their significance. Geochim Cosmochim Acta 42:659–668CrossRefGoogle Scholar
  10. Beccaluva L, Azzouni-Sekkal A, Benhallou A, Bianchini G, Ellam RM, Marzola M, Siena F, Stuart FM (2007) Intracratonic asthenosphere upwelling and lithosphere rejuvenation beneath the Hoggar swell (Algeria): evidence from HIMU metasomatised lherzolite mantle xenoliths. Earth Planet Sci Lett 260:482–494CrossRefGoogle Scholar
  11. Beccaluva L, Bianchini G, Ellam RM, Marzola M, Oun KM, Siena F, Stuart FM (2008) The role of HIMU metasomatic components in the North African lithospheric mantle: petrological evidence from the Gharyan lherzolite xenoliths, NW Libya. In: Coltorti M, Grégoire M (eds) Metasomatism in Oceanic and Continental Lithospheric Mantle. Geol Soc London Spec Publ 293:253–277Google Scholar
  12. Beswick AE (1976) K and Rb relations in basalts and other mantle derived materials. Is phlogopite the key? Geochim Cosmochim Acta 40:1167–1183CrossRefGoogle Scholar
  13. Blancher SB, D’Arco P, Fonteilles M, Pascal ML (2010) Evolution of nepheline from mafic to highly differentiated members of the alkaline series: the Messum complex, Namibia. Mineral Mag 74(3):415–432CrossRefGoogle Scholar
  14. Busrewil MT, Esson J (1991) Chronology and composition of the igneous rocks of Jabal as Sawda. In: Salem MJ et al (eds) The geology of Libya, vol VII. Amsterdam, Elsevier, pp 2599–2603Google Scholar
  15. Busrewil MT, Wadsworth WJ (1980a) Preliminary chemical data on the volcanic rocks of Al Haruj area, central Libya. In: Salem MJ, Busrewil MT (eds) The geology of Libya, vol III. Academic Press, London, pp 1077–1080Google Scholar
  16. Busrewil MT, Wadsworth WJ (1980b) The basanitic volcanoes of the Gharyan area, NW Libya. In: Salem MJ, Busrewil MT (eds) The geology of Libya, vol III. Academic Press, London, pp 1095–1105Google Scholar
  17. Busrewil MT, Wadsworth WJ (1982–1983) The basalts and associated lherzolite xenoliths of Waw-an-Namus Volcano, Libya. Libyan J Sci 2:19–28Google Scholar
  18. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of reference materials BR, DR-N, UB-N, AN-G and GH. Geostandard Newsletter. J Geostand Geoanal 25(2–3):187–198Google Scholar
  19. Charbit S, Guillou H, Turpin L (1998) Cross calibration of K–Ar standard minerals using an unspiked Ar measurement. Chem Geol 150:147–159CrossRefGoogle Scholar
  20. Conant LC, Goudarzi GH (1964) Geologic map of the Kingdom of Libya, 1: 2,000,000. US Geol Surv Misc Geol Invest Map I-350AGoogle Scholar
  21. Cvetković V, Toljić M, Ammar NA, Ljupko Rundić L, Trish KB (2010) Petrogenesis of the eastern part of the Al Haruj basalts (Libya). J Afr Earth Sci 58(1):37–50CrossRefGoogle Scholar
  22. Dautria JM, Lesquer A (1989) An example of the relationship between rift and dome: recent geodynamic evolution of the Hoggar swell and of its nearby regions (Central Sahara, Southern Algeria and Eastern Niger). Tectonophysics 163:45–61CrossRefGoogle Scholar
  23. Dautria JM, Dostal J, Dupuy C, Liotard JM (1988) Geochemistry and petrogenesis of alkali basalts from Tahalra (Hoggar, Northwest Africa). Chem Geol 69:17–35CrossRefGoogle Scholar
  24. Deer WA, Howie RA, Zussman J (1978) Rock-forming minerals. Vol 2A. Single-chain silicates, 2nd edn. Longman, UK and Wiley, NY, p 668Google Scholar
  25. Deniel C (1998) Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions in the genesis of Grande Comore magmas (Indian Ocean). Chem Geol 144:281–303CrossRefGoogle Scholar
  26. Dollase WA, Thomas WM (1978) The crystal chemistry of silica-rich, alkali-deficient nepheline. Contrib Mineral Petrol 66(3):311–318CrossRefGoogle Scholar
  27. Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. J Petrol 42(1):233–250CrossRefGoogle Scholar
  28. Dupuy C, Dostal J, Chikhaoui M (1993) Trace element and isotopic geochemistry of Cenozoic alkali basaltic lavas from Atakor (Central Sahara). Geochim J 27:131–145CrossRefGoogle Scholar
  29. Farahat ES, Abdel Ghani MS, Aboazom AS, Asran AMH (2006) Mineral chemistry of Al Haruj low-volcanicity rift basalts, Libya: implications for petrogenetic and geotectonic evolution. J Afr Earth Sci 45(2):198–212CrossRefGoogle Scholar
  30. Franz G, Puchelt H, Pasteels P (1987) Petrology, geochemistry and age relations of Triassic and Tertiary volcanic rocks from SW Egypt and NW Sudan. J Afr Earth Sci 6(3):335–352Google Scholar
  31. Franz G, Pudlo D, Urlacher G, Haussmann U, Boven A, Wemmer K (1994) The Darfur dome, western Sudan: the product of a subcontinental mantle plume. Geol Rundsch 83:614–623CrossRefGoogle Scholar
  32. Franz G, Steiner G, Volker F, Pudlo D, Hammerschmidt K (1999) Plume related alkaline magmatism in central Africa—the Meidob Hills (W Sudan). Chem Geol 157:27–47CrossRefGoogle Scholar
  33. Fuhrmann U, Lippolt H, Hess JC (1987) HD-B1 Biotite reference material for K-Ar chronometry. Chem Geol 66:41–51Google Scholar
  34. Gèze B, Hudeley H, Vincent P, Wacrenier P (1959) Les volcans du Tibesti (Sahara du Tchad). Bull Volc II(22):135–172CrossRefGoogle Scholar
  35. Global Volcanism Program, Smithsonian Institution. www.volcano.si.edu
  36. Goudarzi GH (1980) Structure-Libya. In: Salem MJ, Busrewil MT (eds) The geology of Libya, vol III. Academic Press, London, pp 879–892Google Scholar
  37. Gourgaud A, Vincent PM (2004) Petrology of two continental alkaline intraplate series at Emi Koussi volcano, Tibesti, Chad. J Volcanol Geotherm Res 129:261–290CrossRefGoogle Scholar
  38. Guillou H, Carracedo JC, Day S (1998) Dating of the upper Pleistocene–Holocene volcanic activity of La Palma using the unspiked K–Ar technique. J Volcanol Geotherm Res 86:137–149CrossRefGoogle Scholar
  39. Guillou H, Singer B, Laj C, Kissel C, Scaillet S, Jicha BR (2004) On the age of the Laschamp geomagnetic event. Earth Planet Sci Lett 227:331–343CrossRefGoogle Scholar
  40. Guiraud R, Doumnang JC, Baigane M, Carretier S, Dominguez S (2000) Evidence for a 6000 km length NW-SE-stricking lineament in northern Africa: the Tibesti Lineament. J Geol Soc London 157:897–900CrossRefGoogle Scholar
  41. Halliday AN, Davidson JP, Holden P, Dewolf C, Lee DC, Fitton JG (1990) Trace-element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon Line. Nature 347(6293):523–528CrossRefGoogle Scholar
  42. Hardarson BS, Fitton JG (1991) Increased mantle melting beneath Snaefellsjökull volcano during Late Pliocene deglaciation. Nature 353:62–64CrossRefGoogle Scholar
  43. Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757CrossRefGoogle Scholar
  44. Hart SR (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett 90:273–296CrossRefGoogle Scholar
  45. Hart SR, Aldrich LT (1967) Fractionation of potassium/rubidium by amphiboles: implications regarding mantle compositions. Science 155:325–327CrossRefGoogle Scholar
  46. Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520CrossRefGoogle Scholar
  47. Hauri EH, Whitehead JA, Hart SR (1994) Fluid dynamic and geochemical aspects of entrainment in mantle plumes. J Geophys Res 99:24275–24300CrossRefGoogle Scholar
  48. Hautmann HJ, Lippolt HJ (2000) 40Ar/39Ar dating of central European K-Mn oxides, a chronological framework of supergene alteration processes during the Neogene. Chem Geol 170:37–80CrossRefGoogle Scholar
  49. Hegazy AH (1999) Tertiary volcanics in Libya: evidence for the direction and rate of the African plate motion. In: Proceeding of the 4th international conference on geochemistry. Alexandria University, Egypt, pp 401–419Google Scholar
  50. Hess JC, Lippolt HJ (1994) Compilation of K-Ar measurements on HD-B1 standard biotite. In: Odin GS (ed) Phanerozoic Time Scale Bull. Liais. Inform. I.U.G.S., Subcom Geochronol 12:19–23Google Scholar
  51. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45CrossRefGoogle Scholar
  52. Jurak L (1978) Geological map of Libya, Sheet Jabal Al Hasawnah (NH33–14): Tripoli, industrial research center, pp 74–100, scale 1:250,000Google Scholar
  53. Kagou Dongmo A, Nkouathio D, Pouclet A, Bardintzeff JM, Wandji P, Nono A, Guillou H (2010) The discovery of late Quaternary basalts on Mount Bambouto: implications for recent widespread volcanic activity in the southern Cameroon Line. J Afr Earth Sci 57(1–2):96–108Google Scholar
  54. Klitzsch E (1968) Der Basaltvulkanismus des Djebel Haroudj, Ostfezzen/Libyen. Geol Rund 57(2):585–601CrossRefGoogle Scholar
  55. Lacroix A (1934) Volcanisme et lithologie. In: Dalloni M (ed) Mission au Tibesti. Mém 61, Acad Sci ParisGoogle Scholar
  56. Le Maitre RW (ed) (2002) Igneous rocks, a classification and glossary of terms. (Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks). Cambridge University Press, Cambridge, p 252Google Scholar
  57. Lelubre M (1946) Le Tibesti septentrional: Esquisse morphologique et structurale. C R Acad Sci coloniales, Paris, pp 337–357Google Scholar
  58. Liégeois JP, Benhallou A, Azzouni-Sekkal A, Yahiaoui R, Bonin B (2005) The Hoggar swell and volcanism: reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geol Soc Am (GSA) Sp Pap 388:379–400Google Scholar
  59. Lindsley DH (1983) Pyroxene thermometry. Amer Min 68:477–493Google Scholar
  60. Marcelot G, Bardintzeff JM, Maury RC, Rançon JP (1988) Chemical trends of early-formed clinopyroxenes from some alkaline and orogenic lavas. Bull Soc Géol Fr 8(IV)(5):851–859Google Scholar
  61. Martin U, Németh K (2006) How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118CrossRefGoogle Scholar
  62. Marty B, Appora I, Barrat JA, Deniel C, Vellutini PJ, Vidal P (1993) He, Ar, Sr, Nd and Pb isotopes in volcanic rocks from Afar: evidence for a primitive mantle component and constraints on magmatic sources. Geochim J 27:219–228CrossRefGoogle Scholar
  63. Middlemost EAK (1975) The basalt clan. Earth Sci Rev 11(4):337–364CrossRefGoogle Scholar
  64. Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26CrossRefGoogle Scholar
  65. Moundi A, Wandji P, Bardintzeff JM, Ménard JJ, Okomo Atouba LC, Mouncherou OF, Reusser E, Bellon H, Tchoua FM (2007) Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la Ligne Volcanique du Cameroun. C R Geosci 339:396–406CrossRefGoogle Scholar
  66. Németh K (2004) The morphology and origin of wide craters at Al Haruj al Abyad, Libya: maars and phreatomagmatism in a large intracontinental flood lava field? Zeitschrift für Geomorphologie 48(4):417–439Google Scholar
  67. Németh K, Suwesi KS, Peregi Z, Gulácsi Z, Ujszászi J (2003) Plio/pleistocene flood basalt related scoria and spatter cones, rootless lava flows, and pit craters, Al Haruj Al Abiyad, Libya, Geolines. J Geol Inst AS Czech Repub 15:98–103Google Scholar
  68. Nkouathio DG, Kagou Dongmo A, Bardintzeff JM, Wandji P, Bellon H, Pouclet A (2008) Evolution of volcanism in graben and horst structures along the Cenozoic Cameroon Line (Africa): implications for tectonic evolution and mantle source composition. Mineral Petrol 94(3–4):287–303CrossRefGoogle Scholar
  69. Odin GS (ed) (1982) Numerical dating in stratigraphy. Wiley, Chichester, vol 2, p 1040Google Scholar
  70. Odin GS (1995) Toward conventions for reference materials for the Ar/Ar technique. In: Odin GS (ed) Phanerozoic Time Scale. Bull Liais Inform I.U.G.S., Subcom Geochronol 13:18Google Scholar
  71. Pesce A (1966) Uau en Namus. In: Williams JJ (ed) South-Central Libya and Northern Chad. Petroleum Exploration Society of Libya, Tripoli, pp 47–51 (8th Annual field conference)Google Scholar
  72. Piccoli G (1970) Outlines of volcanism in northern Tripolitania (Libya). Boll Soc Geol Ital 89:449–461Google Scholar
  73. Pik R, Deniel C, Coulon C, Yirgu G, Marty B (1999) Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim Cosmochim Acta 63(15):2263–2279CrossRefGoogle Scholar
  74. Pik R, Marty B, Hilton DR (2006) How many plumes in Africa? The geochemical point of view. Chem Geol 226:100–114CrossRefGoogle Scholar
  75. Pothé F (2005) Le volcan Waw an Namous (Libye). Bull LAVE 116:7Google Scholar
  76. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152CrossRefGoogle Scholar
  77. Scaillet S, Guillou H (2004) A critical evaluation of young (near-zero) K-Ar ages. Earth Planet Sci Lett 220(3–4):265–275CrossRefGoogle Scholar
  78. Schäfer K, Kraft KH, Häusler H, Erdmann J (1980) In situ stresses and palaeostresses in Libya. In: Salem MJ, Busrewil MT (eds) The geology of Libya, vol III. Academic Press, London, pp 907–922Google Scholar
  79. Schilling JG (1973) Afar mantle plume: rare earth evidence. Nat Phys Sci 242:2–6CrossRefGoogle Scholar
  80. Schult A, Soffel HC (1973) Paleomagnetism of tertiary basalts from Libya. Geophys J Roy Astron Soc 32(3):373–380CrossRefGoogle Scholar
  81. Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of Holocene Volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3, (www.volcano.si.edu/world/)
  82. Singer B, Ackert RP Jr, Guillou H (2004) 40Ar/39Ar and K-Ar chronology of Pleistocene glaciation in Patagonia. Geol Soc Am Bull 116:434–450CrossRefGoogle Scholar
  83. Spell TL, McDougall I (2003) Characterization and calibration of 40Ar/39Ar dating standards. Chem Geol 198:189–211CrossRefGoogle Scholar
  84. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ 42:313–345Google Scholar
  85. Vincent PM (1970) The evolution of the Tibesti Volcanic Province, eastern Sahara. In: Clifford TN, Gass PM (eds) African magmatism and tectonics. Oliver and Boyd, Edinburgh, pp 301–319Google Scholar
  86. Vlastélic I, Deniel C, Bosq C, Telouk P, Boivin P, Bachèlery P, Famin V, Staudacher T (2009) Pb isotope geochemistry of Piton de la Fournaise historical lavas. J Volcanol Geotherm Res 184(1–2):63–78Google Scholar
  87. Wandji P, Bardintzeff JM, Ménard JJ, Tchoua FM (2000) The alkaline fassaite-bearing volcanic province of the Noun Plain (West-Cameroon). N Jb Miner Mh 1:1–14Google Scholar
  88. Wandji P, Tsafack JPF, Bardintzeff JM, Nkouathio DG, Kagou Dongmo A, Bellon H, Guillou H (2009) Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): petrogenetic implications. Mineral Petrol 96(1):81–98CrossRefGoogle Scholar
  89. Weaver BL (1991) Trace element evidence for the origin of ocean island basalts. Geology 19:123–126CrossRefGoogle Scholar
  90. White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729CrossRefGoogle Scholar
  91. Wilkinson JFG, Hensel HD (1994) Nephelines and analcimes in some alkaline igneous rocks. Contrib Mineral Petrol 118:79–91CrossRefGoogle Scholar
  92. Woller F, Fediuk F (1980) Volcanic rocks of Jabal as Sawda. In: Salem MJ, Busrewil MT (eds) The geology of Libya, vol III. Academic Press, London, pp 1081–1093Google Scholar
  93. Woodhead JD (1996) Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook-austral hotspot. J Volcanol Geotherm Res 72:1–19CrossRefGoogle Scholar
  94. Yamasaki S, Sawada R, Ozawa A, Tagami T, Watanabe Y, Takahashi E (2011) Unspiked K-Ar dating of Koolau lavas, Hawaii: evaluation of the influence of weathering/alteration on age determinations. Chem Geol 287(1–2):41–53Google Scholar
  95. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jacques-Marie Bardintzeff
    • 1
    • 2
    • 3
  • Catherine Deniel
    • 4
    • 5
    • 6
  • Hervé Guillou
    • 7
  • Bernard Platevoet
    • 1
    • 3
  • Philippe Télouk
    • 8
  • Khaled M. Oun
    • 9
  1. 1.Univ Paris-Sud, Laboratoire de Pétrographie-Volcanologie and équipe PlanétologieOrsayFrance
  2. 2.Univ Cergy-Pontoise, IUFMCergy-PontoiseFrance
  3. 3.CNRS, OrsayOrsayFrance
  4. 4.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  5. 5.CNRSClermont-FerrandFrance
  6. 6.IRDClermont-FerrandFrance
  7. 7.Laboratoire CEA-CNRS-UVSQ, LSCE/IPSL, Domaine du CNRSGif sur YvetteFrance
  8. 8.Laboratoire des Sciences de la Terre, Ecole Normale Supérieure de LyonLyon Cédex 07France
  9. 9.Geology DepartmentAl-Fateh UniversityTripoliLibya

Personalised recommendations