Skip to main content

Advertisement

Log in

Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 20 April 2011

An Erratum to this article was published on 20 April 2011

Abstract

Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170–1,400 mm ky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Auer M (2003) Regionalisierung von Schneeparametern—Eine Methode zur Darstellung von Schneeparametern im Relief. Universität Bern, 97 pp

  • Battaglia M, Murray MH, Serpelloni E, Bürgmann R (2004) The Adriatic region: an independent microplate within the Africa-Eurasia collision zone. Geophys Res Lett 31:L09650

    Article  Google Scholar 

  • Bernet M, Brandon M, Garver J, Balestieri ML, Ventura B, Zattin M (2009) Exhuming the Alps through time: clues from detrital zircon fission-track thermochronology. Basin Res 21:781–798

    Article  Google Scholar 

  • Bini A, Buoncristani J-F, Couterrand S, Ellwanger D, Felber M, Florineth D, Graf HR, Keller O, Kelly M, Schlüchter C, Schoeneich P (2009) Switzerland during the last maximal: Swisstopo, scale 1:500000, Wabern

  • Binnie SA, Phillips WM, Summerfield MA, Fifield LK (2007) Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range. Geology 35:743

    Article  Google Scholar 

  • Brocklehurst SH, Whipple KX (2002) Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42:1–24

    Article  Google Scholar 

  • Brocklehurst SH, Whipple KX (2007) Response of glacial landscapes to spatial variations in rock uplift rate. J Geophys Res 112:F02035

    Article  Google Scholar 

  • Brückl E, Behm M, Decker K, Grad M, Guterch A, Keller GR, Thybo H (2010) Crustal structure and active tectonics in the Eastern Alps. Tectonics 29. doi:10.1029/2009TC002491

  • Buiter JH, Govers R, Wortel MJR (2002) Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophysics 354:195–210

    Article  Google Scholar 

  • Calais E, Nocquet J-M, Jouanne F, Tardy M (2002) Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001. Geology 30:651–654

    Article  Google Scholar 

  • Cederbom CE, Sinclair HD, Schlunegger F, Rahn MK (2004) Climate-induced rebound and exhumation of the European Alps. Geology 32:709–712

    Article  Google Scholar 

  • Champagnac J, Molnar P, Anderson R, Sue C, Delacou B (2007) Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35:195–198

    Article  Google Scholar 

  • Champagnac J-D, Schlunegger F, Norton KP, von Blanckenburg F, Abbühl LM, Schwab M (2009) Erosion-driven uplift of the modern Central Alps. Tectonophysics 474:236–249

    Article  Google Scholar 

  • Chmeleff J, von Blanckenburg F, Kossert K, Jacob D (2010) Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl Instrum Methods Phys Res B 268:192–199

    Article  Google Scholar 

  • Compagnoni B, Damiani A, Valletta M, Finetti I, Cirese E, Pannuti S, Sorrentino F, Rigano C (1983) Carta Geologica D’Italia: Servizio Geologico D’Italia, scale 1:500000. Rome

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • de Ferranti J (2005) 1″ resolution digital elevation data for the European Alps. http://www.viewfinderpanoramas.org\dem3.html

  • Delunel R, van der Beek PA, Carcaillet J, Bourlès DL, Valla PG (2010) Frost-cracking control on catchment denudation rates: insights from in situ produced 10Be concentrations in stream sediments (Ecrins-Pelvoux massif, French Western Alps). Earth Planet Sci Lett 293:72–83. doi:10.1016/j.epsl.2010.02.020

    Article  Google Scholar 

  • Dewey JF (1988) Extensional collapse of orogens. Tectonics 7:1123–1139

    Article  Google Scholar 

  • DiBiase RA, Whipple KX, Heimsath AM, Ouiment WB (2010) Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth Planet Sci Lett 289:134–144

    Article  Google Scholar 

  • Dunai TJ (2000) Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth Planet Sci Lett 176:157–169

    Article  Google Scholar 

  • England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–1177

    Article  Google Scholar 

  • Florineth D, Schlüchter C (1998) Reconstructing the last glacial maximum (LGM) ice surface geometry and flowlines in the Central Swiss Alps. Eclogae Geologicae Helvetica 91:391–407

    Google Scholar 

  • Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18:873–890

    Article  Google Scholar 

  • Geyer G, Hammer W, Beck H, Götzinger G, Spengler E, Vetters H, Waagen L, Winkler A (1923, 1980) Geologische Karte der Republik: Geologische Bundesanstalt, scale 1:500000. Wien

  • Grenerczy G, Sella G, Stein S, Kenyeres A (2005) Tectonic implications of the GPS velocity field in the northern Adriatic region. Geophys Res Lett 32:L16311. doi:10.1029/2005GL022947

    Article  Google Scholar 

  • Gudmundsson GH (1994) An order-of-magnitude estimate of the current uplift-rates in Switzerland caused by the Würm Alpine deglaciation. Eclogae Geologicae Helvetiae 87:545–557

    Google Scholar 

  • Hall DK, Riggs GA, Salomonson VV (2006) MODIS snow and sea ice products. In: Qu J (ed) Earth science satellite remote sensing—volume 1: science and instruments. Springer, Berlin

    Google Scholar 

  • Handy MR, Babist J, Rosenberg CL, Wagner R, Konrad M (2005) Decoupling and its relation to strain partitioning in continental lithosphere—insight from the periadriatic fault system (European Alps). In: Gapais D, Brun JP, Cobbold PR (eds) Deformation mechanisms, rheology and tectonics, vol 243. Geological Society Special Publications, London, pp 249–276

    Google Scholar 

  • Handy MR, Schmid S, Bousquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Rev. doi:10.1016/j.earscirev.2010.06.002

  • Hinderer M (2001) Late quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta 14:231–263

    Article  Google Scholar 

  • Iacumin P, Quercioli C (1993) A new technique for quantitative separation of quartz from feldspars. Eur J Mineral 5:677–678

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A, Maisch M, Sailer R, Schaefer J, Kubik PW, Synal H-A, Schlüchter C (2006) The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geol Soc Am Spec Pap 415:43–60

    Google Scholar 

  • Jäckli H (1957) Gegenwartsgeologie des Bündnerischen Rheingebietes, vol 36. Beitrage zur Geologie der Schweiz, Zurich, p 136

    Google Scholar 

  • Kahle HG, Geiger A, Buerki B, Gubler E, Marti U, Wirth B, Rothacher M, Gurtner W, Beutler G, Bauersima I, and Pfiffner OA (1997) Recent crustal movements, geoid and density distribution: contribution from integrated satellite and terrestrial measurements. In: Pfiffner OA (eds) Results of the National Research Program 20 (NRP 20), pp 251–259

  • Kerschner H, Ivy-Ochs S (2008) Palaeoclimate from glaciers: examples from the Eastern Alps during the Alpine Lateglacial and early Holocene. Global Planet Change 60:58–71

    Article  Google Scholar 

  • Korup O (2006) Rock-slope failure and the river long profile. Geology 34:45–48

    Article  Google Scholar 

  • Korup O (2008) Rock type leaves topographic signature in landslide-dominated mountain ranges. Geophys Res Lett 35:L11402

    Article  Google Scholar 

  • Korup O, Schlunegger F (2007) Bedrock landsliding, river incision, and transience of geomorphic hillslope-channel coupling: evidence from inner gorges in the Swiss Alps. J Geophys Res 112:F03027

    Article  Google Scholar 

  • Korup O, Schlunegger F (2009) Rock-type control on erosion-induced uplift, eastern Swiss Alps. Earth Planet Sci Lett 278:278–285

    Article  Google Scholar 

  • Kubik P, Christl M (2010) 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nucl Instrum Methods Phys Res Sect B 268:880–883

    Article  Google Scholar 

  • Kuhlemann J, Frisch W, Székely B, Dunkl I, Kázmér M (2002) Post-collisional sediment budget history of the Alps: tectonic versus climatic control. Int J Earth Sci (Geologische Rundschau) 91:818–837

    Article  Google Scholar 

  • Kühni A, Pfiffner OA (2001) The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250-m DEM. Geomorphology 41:285–307

    Article  Google Scholar 

  • Kummerow J, Kind R, Oncken O, Giese P, Ryberg T, Wylegalla K, Scherbaum F, TRANSALP Working Group (2004) A natural and controlled source seismic profile through the Eastern Alps: TRANSALP. Earth Planet Sci Lett 255:115–129

    Article  Google Scholar 

  • Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Res B Solid Earth 108. doi:10.1029/2002JB002016

  • Lyon-Caen H, Molnar P (1989) Constraints on the deep structure and dynamic processes beneath the Alps and adjacent regions from an analysis of gravity anomalies. Geophys J Int 99:19–32

    Article  Google Scholar 

  • Mancktelow NS (1992) Neogene lateral extension during convergence in the Central Alps: Evidence from interrelated faulting and backfolding around the Simplon pass (Switzerland). Tectonophysics 215:295–317

    Article  Google Scholar 

  • Molnar P, Lyon-Caen H (1988) Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol Soc Am Spec Pap 218:179–207

    Google Scholar 

  • Molnar P, Anderson RS, Anderson SP (2007) Tectonics, fracturing of rock, and erosion. J Geophys Res 112:F03014. doi:10.1029/2005JF000433

    Article  Google Scholar 

  • Montgomery DR (2001) Slope distributions, threshold hillslopes, and steady-state topography. Am J Sci 301:432–454

    Article  Google Scholar 

  • National Snow and Ice Data Center (1999, updated 2009) World glacier inventory. World Glacier Monitoring Service and National Snow and Ice Data Center/World Data Center for Glaciology. Digital media, Boulder, CO

  • Neubauer F, Keil M, Windberger M (2007) Initiation and evolution of a major fault-controlled valley: the Enns valley, Eastern Alps. Geophys Res Abstr 9:EGU2007-A-06219

    Google Scholar 

  • Norton KP, Vanacker V (2009) Effects of terrain smoothing on topographic shielding correction factors for cosmogenic nuclide-derived estimates of basin-averaged denudation rates. Earth Surf Proc Land 34:145–154

    Article  Google Scholar 

  • Norton KP, von Blanckenburg F, Schlunegger F, Schwab M, Kubik PW (2008) Cosmogenic nuclide-based investigation of spatial erosion and hillslope channel coupling in the transient foreland of the Swiss Alps. Geomorphology 95:474–486

    Article  Google Scholar 

  • Norton KP, Abbühl LM, Schlunegger F (2010a) Glacial conditioning as an erosional driving force in the Central Alps. Geology 38:655–658. doi:10.1130/G31102.1

    Article  Google Scholar 

  • Norton KP, von Blanckenburg F, Kubik PW (2010b) Cosmogenic nuclide-derived rates of diffusive and episodic erosion in the glacially sculpted upper Rhone Valley, Swiss Alps. Earth Surf Proc Land 35:651–662. doi:10.1002/esp.1961

    Google Scholar 

  • Ouimet WB, Whipple KX, Granger DE (2009) Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37:579–582

    Article  Google Scholar 

  • Persaud M, Pfiffner OA (2004) Active deformation in the eastern Swiss Alps: post-glacial faults, seismicity and surface uplift. Tectonophysics 385:59–84

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extension in compressional orogenic belts: the Eastern Alps. Geology 17:404–407

    Article  Google Scholar 

  • Ratschbacher L, Merle O, Davy P, Cobbold P (1991) Lateral extrusion in the Eastern Alps, part 1: boundary conditions and experiments scaled for gravity. Tectonics 10:245–256. doi:10.1029/90TC02622

    Article  Google Scholar 

  • Robl J, Stüwe K (2005) Continental collision with finite indenter strength: 2. European Eastern Alps. Tectonics 24. doi:10.1029/2004TC001741

  • Robl J, Hergarten S, Stüwe K (2008a) Morphological analysis of the drainage system in the Eastern Alps. Tectonophysics 460:263–277

    Article  Google Scholar 

  • Robl J, Stüwe K, Hergarten S, Evans L (2008b) Extension during continental convergence in the Eastern Alps: the influence of orogen-scale strike-slip faults. Geology 36:603–606

    Article  Google Scholar 

  • Rosenberg CL, Berger A (2009) On the causes and modes of exhumation and lateral growth of the Alps. Tectonics 28:TC6001. doi:10.1029/2008TC002442

    Article  Google Scholar 

  • Rosenberg CL, Brun J-P, Cagnard F, Gapais D (2007) Oblique indentation in the Eastern Alps: insights from laboratory experiments. Tectonics 26:TC2003. doi:10.1029/2006TC001960

    Article  Google Scholar 

  • Ruess D, Höggerl N (2002) Bestimmung rezenter Höhen—und Schwereänderungen in Osterreich. In: Friedl G, Genser J, Handler R, Neubauer F, Steyer H-P (eds) Pangeo Austria, Institut für Geologie und Paläontologie, Universität Salzburg, Salzburg, p 151

  • Safran EB, Bierman PR, Aalto R, Dunne T, Whipple KX, Caffee M (2005) Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surf Proc Land 30:1007–1024

    Article  Google Scholar 

  • Schaller M, von Blanckenburg F, Veldkamp A, Tebbens LA, Hovius N, Kubik PW (2002) A 30,000 year record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet Sci Lett 204:307–320

    Article  Google Scholar 

  • Schlatter A, Schneider D, Geiger A, Kahle HG (2005) Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland. Int J Earth Sci 94:507–514

    Article  Google Scholar 

  • Schlunegger F, Schneider H (2005) Relief-rejuvenation and topographic length scales in a fluvial drainage basin, Napf area, Central Switzerland. Geomorphology 69:102–117

    Article  Google Scholar 

  • Schlunegger F, Simpson G (2002) Possible erosional control on lateral growth of the European Central Alps. Geology 30:907–910

    Article  Google Scholar 

  • Schmid SM, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85

    Article  Google Scholar 

  • Schmid M, Aebli HR, Heller F, Zingg A (1989) The role of the Periadriatic Line in the tectonic evolution of the Alps. In: Conference on Alpine tectonics, vol 45. Geological Society Special Publications, London, pp 153–171

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064

    Article  Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) TRANSMED transects IV, V and VI: three lithospheric transects across the Alps and their forelands. In: Cavazza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED atlas: the Mediterranean region from crust to mantle. Springer, Heidelberg

    Google Scholar 

  • Schwab M, Schlunegger F, Schneider H, Stöckli G, Rieke-Zapp D (2009) Contrasting sediment flux in Val Lumnezia (Graubünden, Eastern Swiss Alps), and implications for landscape development. Swiss J Geosci 102:1661–8726

    Article  Google Scholar 

  • Schwarb M (2001) The Alpine precipitation climate. Evaluation of a high-resolution analysis scheme using comprehensive rain-gauge data. Züricher Klimaschriften 80

  • Selverstone J (2005) Are the Alps collapsing? Annu Rev Earth Planet Sci 33:113–132

    Article  Google Scholar 

  • Snyder NP, Whipple KX, Tucker GE, Merrits DJ (2000) Landscape response to channel forcing: DEM analysis of stream profiles in the Mendocino triple junction region, northern California. Geol Soc Am Bull 112:1250–1263

    Article  Google Scholar 

  • Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2003) Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology 53:97–127

    Article  Google Scholar 

  • Stüwe K, Barr TD (1998) On uplift and exhumation during convergence. Tectonics 17:80–88

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (1986) Collision tectonics, vol 19. Geological Society Special Publications, London, pp 115–157

  • Vernon AJ, van der Beek PA, Sinclair HD, Rahn MK (2008) Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth Planet Sci Lett 270:316–329

    Article  Google Scholar 

  • Vernon AJ, van der Beek P, Sinclair HD (2009) Spatial correlation between long-term exhumation rates and present-day forcing parameters in the western European Alps. Geology 37:859–862

    Article  Google Scholar 

  • von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237:462–479

    Article  Google Scholar 

  • von Blanckenburg F, Kagami H, Deutsch A, Wiedenbeck M, Oberli F, Meier M, Barth S, Fischer H (1998) The origin of Alpine plutons along the Periadriatic Lineament. Schweiz Mineral Petrogr Mitt 78:55–66

    Google Scholar 

  • Vrabec M, Pavlovcic Preseren P, Stopar B (2006) GPS study (1996–2002) of active deformation along the Periadriatic fault system in northeastern Slovenia: tectonic model. Geologica Carpathica 57(1):57–65

    Google Scholar 

  • Wagner T, Fabel D, Fiebig M, Häuselmann P, Sahy D, Xu S, Stüwe K (2010) Young uplift in the non-glaciated parts of the Eastern Alps. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.03.034

  • Weber J, Vrabec M, Pavlovčič-Prešeren P, Dixon T, Jiang Y, Stopar B (2010) GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites, and geodynamic implications. Tectonophyics 483:214–222

    Article  Google Scholar 

  • Whipple KX (2004) Bedrock Rivers and the geomorphology of active orogens. Annu Rev Earth Planet Sci 32:151–185

    Article  Google Scholar 

  • Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nat Geosci 2:97–104

    Article  Google Scholar 

  • Whipple KX, Kirby E, Brocklehurst SH (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature 401:39–43

    Article  Google Scholar 

  • Willenbring JK, von Blanckenburg F (2010) Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465:211–214. doi:10.1038/nature09044

    Article  Google Scholar 

  • Willet SD, Schlunegger F, Picotti V (2006) Messinian climate change and erosional destruction of the central European Alps. Geology 34:613–616

    Article  Google Scholar 

  • Willett SD (2010) Late Neogene erosion of the Alps: a climate driver? Annu Rev Earth Planet Sci 38:409–435

    Article  Google Scholar 

  • Willett SD, Brandon MT (2002) On steady states in mountain belts. Geology 30:175–178

    Article  Google Scholar 

  • Willett SD, Slingerland R, Hovius N (2001) Uplift, shortening, and steady state topography in active mountain belts. Am J Sci 301:455–485

    Google Scholar 

  • Wittmann H, von Blanckenburg F, Kruesmann T, Norton KP, Kubik PW (2007) Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. J Geophys Res 112:F04010. doi:10.1029/2006JF000729

    Article  Google Scholar 

  • Wobus C, Whipple KX, Kirby E, Snyder E, Johnson J, Spyropolou K, Crosby B, and Sheehan D (2006) Tectonics from topography: Procedures, promise, and pitfalls. In: Willett SD, Hovius N, Brandon MT, Fisher DM (eds) Tectonics, climate, and landscape evolution: Geological Society of America Special Paper 398, Penrose Conference Series, Geological Society of America, pp 55–74

Download references

Acknowledgments

We are grateful to the reviews by Kurt Stüwe and Jean-Daniel Champagnac, the detailed remarks and excellent editorial handling of Mark Handy, and comments from Nicolas Legrain and Jean Dixon. We acknowledge financial support to F.v.B. by the European Science Foundation Project “TopoAlps” and by DFG grant BL562-2. As an undergraduate, F.v.B. was fascinated and inspired to study Alpine Geology by Rudolf Trümpy’s lectures and field courses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Norton.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00531-011-0655-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, K.P., von Blanckenburg, F., DiBiase, R. et al. Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps. Int J Earth Sci (Geol Rundsch) 100, 1163–1179 (2011). https://doi.org/10.1007/s00531-010-0626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0626-y

Keywords

Navigation