Advertisement

International Journal of Earth Sciences

, Volume 100, Issue 8, pp 1967–1985 | Cite as

Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)

  • Gonca Gencalioglu-Kuscu
Original Paper

Abstract

Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an “orogenic” fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts (sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb–Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the “alkaline” basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts (sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts (sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source characteristics. Indeed, HFS and other incompatible element ratios suggest the role of crustal contamination in the genesis of the CAVP monogenetic basalts.

Keywords

Central Anatolian Volcanic Province Erciyes Maar Scoria Basaltic andesite Lithospheric extension 

Notes

Acknowledgments

The research was funded by the Scientific and Technological Research Council of Turkey (TUBITAK-CAYDAG), project number 102Y131. The author gratefully acknowledges partial support by TUBITAK towards presenting part of this study at the 2nd International Maar Conference in Hungary. Zoltan Pécskay of Institute of Nuclear Research (ATOMKI) of Hungarian Academy of Sciences is thanked for the K/Ar analyses. Christoph Breitkreuz, Gerhard Wörner, and Karoly Nemeth provided constructive comments that helped to improve the manuscript.

References

  1. Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102:67–95CrossRefGoogle Scholar
  2. Alici Sen P, Temel A, Gourgaud A (2004) Petrogenetic modelling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geol Mag 141:81–98CrossRefGoogle Scholar
  3. Aranda-Gomez JJ, Luhr JF (1996) Origin of the Joya Honda maar, San Luis Potosi, Mexico. J Volcanol Geotherm Res 63:183–199Google Scholar
  4. Arcasoy A (2001) A new method for detecting the alignments from point-like features: an application to the volcanic cones of Cappadocian Volcanic Province, Turkey. PhD Dissertation, Middle East Technical University, Ankara,174 ppGoogle Scholar
  5. Atilla C (2005) Physical volcanology of Cora Maar. MSc Thesis, Nigde University, Turkey, 65 ppGoogle Scholar
  6. Aydar E (1997) Volcanological and petrological characteristics of Karatas volcanics, central Anatolia Yerbilimleri (Bulletin of the Earth Sciences of Hacettepe University) 19:41–55 (in Turkish with English abstract)Google Scholar
  7. Aydar E, Gourgaud A (1993) Evolution of magma chambers and related petrogenetic processes of the Hasandag stratovolcano. Yerbilimleri 16:101–113 (in Turkish with English abstract)Google Scholar
  8. Aydar E, Gourgaud A (1998) The geology of Mount Hasan stratovolcano, central Anatolia, Turkey. J Volcanol Geotherm Res 85:129–152CrossRefGoogle Scholar
  9. Aydar E, Gourgaud A (2002) Garnet-bearing basalts: an example from Mt. Hasan, central Anatolia, Turkey. Miner Petrol 75:185–201CrossRefGoogle Scholar
  10. Aydar E, Gundogdu N, Bayhan H, Gourgaud A (1994) Kapadokya bolgesinin Kuvaterner yasli volkanizmasinin volkanik-yapisal ve petrolojik incelenmesi [Volcanic-structural and petrological investigation of Quaternary volcanism of Cappadocian Province]. Tubitak Yerbilimleri Dergisi 3:25–42 [in Turkish with English abstract]Google Scholar
  11. Aydar E, Gourgaud A, Deniel C, Lyberis N, Gundogdu N (1995) Le volcanisme Quaternary d’Anatolie central (Turquie): association de magmatismes calco-alcalin et alcalin en domaine de convergence. Can J Earth Sci 32:1058–1069CrossRefGoogle Scholar
  12. Aydin F (2008) Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Nigde volcanic rocks, Turkey: textural, mineral chemical and geochemical evidence. European J Mineral 20(1):101–118CrossRefGoogle Scholar
  13. Ayranci B (1991) The magnificent volcano of central Anatolia: Mt. Erciyes near Kayseri. Bull Tech Univ Istanbul 44:375–417Google Scholar
  14. Balogh K (1985) K/Ar dating of Neogene volcanic activity in Hungary. Experimental technique, experiences and methods of chronological studies. ATOMKI Reports D/1:277–288Google Scholar
  15. Balogh K, Nemeth K (2005) Evidence for the Neogene small-volume intracontinental volcanism in Western Hungary: K/Ar geochronology of the Tihany Maar Volcanic Complex. Geol Carpathica 56:91–99Google Scholar
  16. Batum I (1978) Nevsehir guneybatisindaki Golludag ve Acigol yoresi volkanitlerinin jeolojisi ve petrografisi (Geology and petrography of volcanics in Golludag and Acigol region to the SW of Nevsehir) Yerbilimleri 4:50–69Google Scholar
  17. Belousov AB (2006) Distribution and Eruptive Mechanism of Maars in the Kamchatka Peninsula. Doklady Earth Sci 406:24–27CrossRefGoogle Scholar
  18. Boari E, Conticelli S (2007) Mineralogy and petrology of associated Mg-rich ultrapotassic, shoshonitic, and calc-alkaline rocks: The Middle Latin Valley monogenetic volcanos, Roman Magmatic Province, Southern Italy. Can Min 45:1443–1469CrossRefGoogle Scholar
  19. Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des procesus de melange et/ou de contamination crutale. Comptes Rendus de’l Academie des Sci, ser II 309:2023–2029Google Scholar
  20. Coulon C, Megartsi M, Fourcade S, Maury RC, Bellon H, Louni-Hacini A, Cotten J, Coutelle A, Hermitte D (2002) Post-collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff. Lithos 62:87–110CrossRefGoogle Scholar
  21. De Paolo DJ, Daley EE (2000) Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem Geol 169:157–185CrossRefGoogle Scholar
  22. Deniel C, Aydar E, Gourgaud A (1998) The Hasandag stratovolcano (central Anatolia, Turkey): evolution from calc-alkaline to alkaline magmatism in a collision zone. J Volcanol Geotherm Res 87:275–302CrossRefGoogle Scholar
  23. Dewey JF, Pitman WC, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the Alpine System. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  24. Dhont D, Chorowicz J, Yurur T, Froger J-L, Kose O, Gundogdu N (1998) Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey. J Volcanol Geotherm Res 5:33–54CrossRefGoogle Scholar
  25. Dirik K (2001) Neotectonic evolution of the northwestward arched segment of the Centran Anatolian Fault Zone, central Anatolia, Turkey. Geodinamica Acta 14:147–158CrossRefGoogle Scholar
  26. Dirik K, Goncuoglu MC (1996) Neotectonic characteristics of Central Anatolia. Int Geol Rev 38:807–817CrossRefGoogle Scholar
  27. Ercan T, Yildirim T, Akbasli A (1987) Gelveri (Nigde)-Kizilcin (Nevsehir) arasindaki volkanizmanin ozellikleri (Characteristics of volcanism between Gelveri (Nigde)-Kizilcin (Nevsehir)). Jeomorfoloji Dergisi 15:7–36Google Scholar
  28. Ercan T, Tokel S, Matsuda JI, Ui T, Notsu K, Fujitani T (1992) New geochemical, isotopic and radiometric data of the Quaternary volcanism of Hasandagi-Karacadag (Central Anatolia). TJK Bülteni 7:8–21 (in Turkish with English abstract)Google Scholar
  29. Ercan T, Tokel S, Matsuda JI, Ui T, Notsu K, Fujitani T (1994) New geochemical, isotopic and radiometric data on the Plio-Quaternary Erciyes (central Anatolia) volcanism, and its significance in terms of geothermal energy. Proceedings of the 6th Energy Congress of Turkey, 17–22 October 1994, Izmir, Turkey (in Turkish)Google Scholar
  30. Erol O (2001) Geomorphology of the Sultansazligi Basin and the Erciyes Mountain at the northeastern end of the Ecemis Corridor. Pro Ecemis Fault Zone Worksh 1:9–19Google Scholar
  31. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, BerlinGoogle Scholar
  32. Fitton JG, James D, Leeman WP (1991) Basic magmatism associated with late Cenozoic extension in the western United States: compositional variations in space and time. J Geophys Res 96:13693–13711CrossRefGoogle Scholar
  33. Gencalioglu-Kuscu G, Floyd PA (2002) Geochemical correlations between effusive and explosive silicic volcanics in the Saraykent region (Yozgat), central Anatolia, Turkey. Geol J 37:143–165CrossRefGoogle Scholar
  34. Gencalioglu-Kuscu G, Geneli F (2010) Review of post-collisional volcanism in the Central Anatolian Volcanic Province (Turkey), with special reference to the Tepekoy Volcanic Complex. Int J Earth Sci 99:593–621CrossRefGoogle Scholar
  35. Gencalioglu-Kuscu G, Satvan N, Atilla C (2004) An example to Quaternary maar volcanism in Cappadocian Volcanic Province: Cora Maar, Central Anatolia, Turkey. 2nd International Maar Conference (Kecskemet- Hungary) Abstracts, Occasional Papers of the Geological Institute of Hungary 203, p 59Google Scholar
  36. Gencalioglu-Kuscu G, Atilla C, Cas RAF, Kuscu I (2007) Eruption History, Vent Development and Depositional Processes of a Wet Phreatomagmatic Volcano in Central Anatolia (Cora Maar). J Volcanol Geotherm Res 159:198–209CrossRefGoogle Scholar
  37. Gevrek AI, Kazanci N (2000) A Pleistocene, pyroclastic-poor maar from central Anatolia, Turkey: influence of a local fault on a phreatomagmatic eruption. J Volcanol Geotherm Res 9:309–317CrossRefGoogle Scholar
  38. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, p 385Google Scholar
  39. Goncuoglu MC, Toprak V (1992) Neogene and Quaternary volcanism of central Anatolia: a volcano-structural evaluation. Bull Sec Volcanol Soc Géol France 26:1–6Google Scholar
  40. Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. Geol Soc America Spec Paper 418:67–92Google Scholar
  41. Hawkesworth CJ, Kempton PD, Rogers NW, Ellam RM, Van Calstercn PW (1990) Continental mantle lithosphere, and shallow level enrichment processes in the Earth’s mantle. Earth Planet Sci Lett 96:256–268CrossRefGoogle Scholar
  42. Hawkesworth CJ, Turner S, Gallagher K, Hunter A, Bradshaw T, Rogers N (1995) Calc-alkaline magmatism, lithospheric thinning and extension in the Basin and Range. J Geophys Res 100:10271–10286CrossRefGoogle Scholar
  43. Innocenti F, Mazzuoli G, Pasquare F, Radicati Di Brozola F, Villari L (1975) The Neogene calc-alkaline volcanism of Central Anatolia: geochronological data on Kayseri-Nigde area. Geol Mag 112:349–360CrossRefGoogle Scholar
  44. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Canadian J Earth Sci 8:523–548CrossRefGoogle Scholar
  45. Jaffey N, Robertson A, Pringle M (2004) Latest Miocene and Pleistocene ages of faulting, determined by 40Ar/39Ar single-crystal dating of airfall tuff and silicic extrusives of the Erciyes Basin, central Turkey: evidence for intraplate deformation related to the tectonic escape of Anatolia. Terra Nova 16:45–53. doi: 10.1111/j.1365-3121.2003.00526.x CrossRefGoogle Scholar
  46. Kaymakci N, Kuscu I (2007) Late cretaceous to recent kinematic evolution of Turkey, European Geosciences Union 2007Geophysical Research Abstracts, Vol 9, 05426, 2007. SRef-ID: 1607-7962/gra/EGU2007-A-05426Google Scholar
  47. Kaymakci N, Inceoz M, Ertepinar P (2006) 3D-Architecture and neogene evolution of the malatya basin: inferences for the kinematics of the malatya and ovacik fault zones. Turkish J Earth Sci 15:123–154Google Scholar
  48. Kazanci N, Gevrek AI, Varol B (1995) Facies changes and high calorific peat formation in a Quaternary maar lake, Central Anatolia, Turkey: the possible role of geothermal processes in closed lacustrine basin. Sedim Geol 94:255–266CrossRefGoogle Scholar
  49. Keller J (1974) Quaternary maar volcanism near Karapinar in central Anatolia. Bull Volcanol 38:378–396CrossRefGoogle Scholar
  50. Kocyigit A, Beyhan A (1998) A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284:317–336CrossRefGoogle Scholar
  51. Kurkcuoglu B, Sen E, Aydar E, Gourgaud A, Gundogdu N (1998) Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano Central Anatolia, Turkey. J Volcanol Geotherm Res 85:473–494CrossRefGoogle Scholar
  52. Kurkcuoglu B, Sen E, Temel A, Aydar E, Gourgaud A (2001) Trace Element Modelling and Source Constraints for Tholeiitic and Calc-Alkaline Basalts from a Depleted Asthenospheric Mantle Source, Mt. Erciyes Stratovolcano, Turkey. Int Geol Rev 43:508–522CrossRefGoogle Scholar
  53. Kurkcuoglu B, Sen E, Temel A, Aydar E, Gourgaud A (2004) Interaction of asthenospheric and lithospheric mantle: the genesis of Calc-alkaline Volcanism at Erciyes Volcano, Central Anatolia, Turkey. Int Geol Rev 46:243–258CrossRefGoogle Scholar
  54. Le Pennec JL, Bourdier JL, Froger JL, Temel A, Camus G, Gourgaud A (1994) Neogene ignimbrites of the Nevsehir plateau (central Turkey): stratigraphy, distribution and source constraints. J Volcanol Geotherm Res 63:59–87CrossRefGoogle Scholar
  55. Lorenz V (1987) Phreatomagmatism and its relevance. Chem Geol 62:149–156CrossRefGoogle Scholar
  56. MacLean WH, Barrett TJ (1993) Lithochemical techniques using immobile elements. J Geochem Exp 48:109–133CrossRefGoogle Scholar
  57. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  58. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679Google Scholar
  59. Morris GA, Larson PB, Hooper PR (2000) “Subduction style” magmatism in a non-subduction setting: the Colville Igneous Complex, NE Washington State, USA. J Petrol 41:43–67CrossRefGoogle Scholar
  60. Notsu K, Fujitani T, Ui T, Matsuda J, Ercan T (1995) Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. J Volcanol Geotherm Res 64:171–192CrossRefGoogle Scholar
  61. Ormerod DS, Rogers NW, Hawkesworth CJ (1991) Melting in the lithospheric mantle: inverse modelling of alkali-olivine basalts from the Big Pine Volcanic Field, California. Contrib Mineral Petrol 108:305–317CrossRefGoogle Scholar
  62. Parlak O, Delaloye M, Kozlu H, Fontignie D (2000) Trace element and Sr-Nd isotope geochemistry of the alkali basalts observed along the Yumurtalik Fault (Adana) in southern Turkey. Bull Earth Sci Appl Res Center of Hacettepe University 22:137–148Google Scholar
  63. Pasquaré G, Poli S, Vezzoli L, Zanchi A (1988) Continental arc volcanism and tectonic setting in centralAnatolia, Turkey. Tectonophysics 146:217–230CrossRefGoogle Scholar
  64. Paulick H, Ewen C, Blanchard H, Zoller L (2009) The Middle-Pleistocene (*300 ka) Rodderberg maar-scoria cone volcanic complex (Bonn, Germany): eruptive history, geochemistry, and thermoluminescence dating. Int J Earth Sci 98:1879–1899CrossRefGoogle Scholar
  65. Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, UK, pp 230–249Google Scholar
  66. Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  67. Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Guner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229CrossRefGoogle Scholar
  68. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanics rocks from Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  69. Pécskay Z, Molnár F (2002) Relationships between volcanism and hydrothermal activity in the Tokaj Mountains, Northern Hungary, based on K-Ar ages. Geol Carpathica 53:1–12Google Scholar
  70. Rogers NW, Hawkesworth CJ, Ormerod DS (1995) Late Cenozoic basaltic magmatism in the Western Great Basin, California and Nevada. J Geophy Res 100:10287–10301CrossRefGoogle Scholar
  71. Rosu E, Seghedi I, Downes H, Alderton DHM, Szakacs A, Pécskay Z, Panaiotu C, Panaiotu Nedelcu L (2004) Extension related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania: origin of magmas. Schweizerische Min. Pet. Mitteilungen 84:153–172Google Scholar
  72. Rudnick RL, Gao S (2004) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64Google Scholar
  73. Seghedi I, Balintoni I, Szakacs A (1998) Interplay of tectonics and Neogene post-collisional magmatism in the Intracarpathian region. Lithos 45:483–497CrossRefGoogle Scholar
  74. Sen E (1997) Erciyes Stratovolkani’nin (Orta Anadolu) volkanolojik ve petrolojik gelisiminin incelenmesi (Investigation of volcanological and petrological evolution of Erciyes stratovolcano, central Anatolia), MSc Thesis, Hacettepe UniversityGoogle Scholar
  75. Sen E, Aydar E, Gourgaud A, Kurkcuoglu B (2002) La phase explosive précédant l’extrusion des domes volcaniques: exemple du dome rhyodacitique de Dikkartin Dag, Erciyes, Anatolie central, Turquie. CR Geoscience 334:27–33CrossRefGoogle Scholar
  76. Sen E, Kurkcuoglu B, Aydar E, Gourgaud A, Vincent PM (2003) Volcanological evolution of Mount Erciyes stratovolcano and origin of the Valibaba Tepe ignimbrite (Central Anatolia, Turkey). J Volcanol Geotherm Res 125:225–246CrossRefGoogle Scholar
  77. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  78. Smith AG (1971) Alpine deformation and the oceanic areas of the Tethys Mediterranean and Atlantic. Bull Geol Soc Am 82:2039–2070CrossRefGoogle Scholar
  79. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527CrossRefGoogle Scholar
  80. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Saunders, AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42, pp 313–345Google Scholar
  81. Temel A, Gundogdu MN, Gourgaud A, Le Pennec J-L (1998) Ignimbrites of Cappadocia (Central Anatolia Turkey): petrology and geochemistry. J Volcanol Geotherm Res 85:447–471CrossRefGoogle Scholar
  82. Tokel S, Ercan T, Akbasli A, Yildirim T, Fisekci A, Selvi Y, Olmez M, Can B (1988) Neogene tholeiitic province of central Anatolia: implication for magma genesis and post-collision lithospheric dynamics. Tokay Symposium, METU J Pure and Applied Sciences 21:461–477Google Scholar
  83. Toprak V (1998) Vent distribution and its relation to regional tectonics, Cappadocian volcanics. Turkey J Volcanol Geotherm Res 85:55–67CrossRefGoogle Scholar
  84. Toprak V, Goncuoglu MC (1993) Tectonic control on the evolution of the Neogene-Quaternary Central Anatolian volcanic Province, Turkey. Geol J 28:357–369CrossRefGoogle Scholar
  85. Toprak V, Keller J, Schumacher R (1994) Volcano-tectonic features of the Cappadocian Volcanic Province, IAVCEI International Volcanological Congress, Ankara, Special Publication No:7 58 pGoogle Scholar
  86. Verma SP (1999) Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism at the volcanic front of the Central Mexican Volcanic Belt. J Volcanol Geotherm Res 93:151–171CrossRefGoogle Scholar
  87. Wilson M (1989) Igneous petrogenesis. Kluwer, DordrechtCrossRefGoogle Scholar
  88. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  89. Yilmaz Y (1990) Comparison of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review. In: LeFort P, Pearce JA, Pecher A (eds) Collision Magmatism, J Volcan Geotherm Res (Special issue) 44, pp 69–87Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Geological EngineeringMugla UniversityMuglaTurkey

Personalised recommendations