Skip to main content
Log in

The metamorphic aureole of the Nisa-Alburquerque batholith (SW Iberia): implications for deep structure and emplacement mode

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Nisa-Alburquerque granitic batholith (southern Variscan Belt, Iberian Peninsula) has been studied by petrological, structural and geophysical approaches, obtaining contrasting models for its deep structure and emplacement sequence. In order to test these models and gain knowledge on the thermal increase induced by the intrusion, we have studied its contact aureole, which was developed in similar country rock lithologies (mica schists alternating with metasandstones and feldespatic schists) all along the northern external contact of the batholith. Our results indicate no change in metamorphic grade and some variations in aureole width, which narrows toward the western sectors of the batholith. Cordierite is the only contact metamorphic mineral developed together with a high temperature biotite probably related to the granite thermal input. By considering these new data, together with zircon saturation temperatures within the granite and previous petrological and geophysical studies, we propose a model in which the feeder zones of the granitic magmas were an eastern main one and a western secondary one. We have also made comparisons of the metamorphic grade in the country rocks and the xenoliths within the granite. Most of the xenoliths have the same metamorphic facies as the country rocks (Crd-zone), though some of them contain slightly different assemblages (And + Crd), which could be explained in different ways: (1) differences in the primary schist compositions, (2) increased time-span of xenoliths in contact with the melt and (3) xenolith incorporation at slightly higher depths during final granite ascent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aranguren A, Larrea FJ, Carracedo M, Cuevas J, Tubía JM (1997) The Los Pedroches batholith (Southern Spain): poliphase interplay between shear zones in transtension and setting of granites. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic Publishers, Dordrech, pp 215–229

    Google Scholar 

  • Aranguren A, Cuevas J, Tubia JM, Roman-Berdiel T, Casas-Sainz A, Casas-Ponsati A (2003) Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Spain). J Geol Soc London 160:435–445

    Article  Google Scholar 

  • Arenas R, Farias P, Gallastegui G, Gil Ibarguchi JI, Gonzalez Lodeiro F, Klein E, Marquínez J, Martín Parra LM, Martínez Catalán JR, Ortega E, Pablo Macía JG, Peinado M, Rodríguez-Fernández LR (1988) Características geológicas y significado de los dominios que componen la Zona de Galicia Tras-os-Montes. II Congreso Geológico de España. Simposios, pp 75–84

  • Azor A, Menéndez LG, Galindo-Zaldivar J, Galadí-Enriquez E (2000) The structure of the Nisa-Alburquerque batholith (SW Iberian Massif). Variscan-Appalachian dynamics. 15th international conference on basement tectonics. La Coruña, Spain. Abstracts 49–50

  • Azor A, Expósito I, González Lodeiro F, Simancas JF, Martínez Poyatos D (2004) La Unidad Central o contacto entre las zonas de Ossa-Morena y Centroibérica. Geología de España SGE-IGME, Madrid, pp 128–133

  • Baxter EF (2003) Natural constraints on metamorphic reaction rates. Geochronology: linking the isotopic record with petrology and textures. Geol Soc Spec Publ 220:183–202

    Article  Google Scholar 

  • Bea F (2004) La naturaleza del magmatismo de la Zona Centroibérica: consideraciones generales y ensayo de correlación. En Geología de España (JA Vera Ed) SGE-IGME Madrid, pp 186–188

  • Bea F, Sánchez González de Herreo JG, Serrano Pinto M (1987) Una compilación geoquímica para los granitoides del Macizo Hespérico. En: Geología de los granitoides y rocas asociadas del Macizo Hespérico. Bea F, Carnicero A, Gonzalo JC, López plaza M, Rodríguez Alonso MD, pp 87–193

  • Gumiel P, Campos R, Monteserín V, Bellido F (2002) Mapa Geológico y de Recursos Minerales del Sector Centro-Occidental de Extremadura (E. 1: 100,000). In: Junta de Extremadura Special Report. IGME-CIEMAT

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin

    Google Scholar 

  • Campos R, Plata JL (1991) Gravity Survey. In: Development of new multidisciplinary techniques for mineral exploration in several areas of the western Iberian peninsula. In: Gumiel P, Pacheco A, Campos R (eds). ITGE Special Publication, pp 55–66

  • Casquet C, Galindo C (2004) Magmatismo varisco y postvarisco en la Zona de Ossa-Morena. En Geología de España. In: Vera JA (ed) SGE-IGME, Madrid, pp 194–198

  • Castro A, Corretgé LG, De la Rosa JD, Enrique P, Martínez FJ, Pascual E, Lago M, Arranz E, Galé C, Fernández C, Donaire T, López S (2002) Paleozoic magmatism. In: Gibbons W, Moreno T (eds) The Geology of Spain. Geological Society, London, pp 117–153

  • Dahlquist JA, Rapela CW, Baldo EG (2005) Petrogenesis of cordierite-bearing S-type granitoids in Sierra de Chepes, Famatinian orogen, Argentina. J South Am Earth Sci 20:231–251

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals. Disilicates and ring silicates, vol 1B, 2nd edn. Geological Society, London, pp 135–232

  • Erdmann SA, Clarke DB, MacDonald MA (2004) Origin of chemically zoned and unzoned cordierites from the South Mountain and Musquodoboit batholiths. Trans Roy Soc Edinb Earth Sci 95:99–110

    Article  Google Scholar 

  • Farias P, Gallastegui G, González Lodeiro F, Marquínez J, Martín Parra LM, Martínez Catalán JR, Pablo Macía JG, Rodríguez-Fernández LR (1987) Aportaciones al conocimiento de la litoestratigrafía y estructura de Galicia Central. Mem Museo e Lab Miner Geol, Fac Ciencias, Univ Porto 1:411–431

    Google Scholar 

  • Galadí-Enríquez E, Galindo-Zaldívar J, Simancas JF, Expósito I (2003) Diapiric emplacement in the upper crust of a granitic body: the La Bazana granite (SW Spain). Tectonophysics 361:83–96

    Article  Google Scholar 

  • Galindo C, Casquet C (2004) Magmatismo prevarisco de la Zona de Ossa-Morena. Geología de España, SGE-IGME, Madrid, pp 190–194

  • Glazner AF, Bartley JM (2006) Is stoping a volumetrically significant pluton emplacement process? GSA Bull 118(9/10):1185–1195

    Article  Google Scholar 

  • González Menéndez L (1998) Petrología y Geoquímica del Batolito de Nisa-Alburquerque. PhD thesis, Universidad de Granada, Spain

  • González Menéndez L (2002) Petrología del Batolito de Nisa-Alburquerque. Rev Soc Geol España 15(3–4):233–246

    Google Scholar 

  • González Menéndez L, Azor A (2003) Condiciones PT de emplazamiento del Batolito de Nisa-Alburquerque. Geogaceta 34:103–106

    Google Scholar 

  • González Menéndez L, Azor A (2006) Estructura interna del Batolito de Nisa-Alburquerque. Geogaceta 40:131–134

    Google Scholar 

  • González Menéndez L, Bea F (2004) El batolito de Nisa-Alburquerque. Geología de España, SGE-IGME, Madrid, pp 120–122

  • Henry DR, Guidotti CV, Thompson JA (2005) The Ti-saturation surface for low to medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanism. Am Mineral 90:316–328

    Article  Google Scholar 

  • Jaeger JC (1968) Cooling and solidification of igneous rocks. In: Hess HH, Poldervaart A (eds) Basalts: the Poldervaart treatise on rocks of basaltic composition, vol 2. Interscience Publishers, Wiley, New York, pp 503– 536

  • Julivert M, Marcos A, Truyols J (1972) Lévolution paleogeographic du NW de l’Espagne pendant l’Ordovicien-Silurien. Bull Soc Geol Mineral Bretagne 4:1–7

    Google Scholar 

  • Kalt A, Altherr R, Ludwig T (1998) Contact metamorphism in pelitic rocks on the Island of Kos (Greece, Eastern Aegean Sea): a test for the Na-in-cordierite thermometer. J Petrol 39(4):663–688

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • London D, Morgan GB IV, Wolf M (1996) Boron in granitic rocks and their contact aureoles. In: Grew ES, Anovitz L (eds) Boron: mineralogy, petrology and geochemistry in the Earth′s crust. Min Soc Am Reviews in Mineralogy 33:719–734

  • López-Munguira A, Sebastián Pardo E, Nieto García F (1990) Mineralogía y Geoquímica del límite entre las zonas de Ossa-Morena y Centroibérica en el area extremeña del Macizo Hespérico. Rev Soc Geol España 3(1–2):43–51

    Google Scholar 

  • López-Munguira A, Nieto García F, Sebastián Pardo E, Velilla N (1991) The composition of phyllosilicates in Precambrian, low-grade-metamorphic, clastic rocks from the Southern Hesperian Massif (Spain) used as an indicator to metamorphic conditions. Precambrian Res 53:267–279

    Article  Google Scholar 

  • Lotze F (1945) Zur Gliederum der Varisziden der Iberischen Meseta. Geotekt Forsch 6:78–92

    Google Scholar 

  • Mather JD (1970) The biotite isograd and the lower greenschist facies in the Daldarian rocks of Scotland. J Petrol 11:253–275

    Google Scholar 

  • Miller CF, Meschter McDowell S, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6):529–532

  • Mirwald PW (1986) Ist cordierit ein geothermometer. Fortschritte der Mineralogie 64(Beiheft 1):119

  • Morgan GB IV, London D (1987) Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Benic Lake, Manitoba. Am Mineral 72:1097–1121

    Google Scholar 

  • Morgan GB IV, London D (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 Mpa: implications for tourmaline stability and partial melting in mafic rocks. Contrib Mineral Petrol 102:281–297

    Article  Google Scholar 

  • Pattison DRM (2001) Instability of Al2SiO5 “triple-point” assemblages in muscovite + biotite + quartz-bearing metapelites, with implications. Am Mineral 86:1414–1422

    Google Scholar 

  • Pattison DRM, Harte B (1997) The geology of the Ballachulish igneous complex and aureole. Scotish J Geol 33(1):1–29

    Article  Google Scholar 

  • Pattison DRM, Vogl JJ (2005) Contrasting sequences of metapelitic mineral-assemblages in the aureole of the tilted Nelson Batholith, British Columbia: implications for the phase equilibria and pressure determination in andalusite-sillimanite settings. Can Mineral 43:51–88

    Article  Google Scholar 

  • Pattison DRM, Spear FS, Debuhr CL, Cheney JT, Guidotti CV (2002) Thermodynamic modelling of the reaction muscovite + cordierite = Al2SiO5 + biotite + Quartz + H2O: constraints from natural assemblages and implications for the metapelitic petrogenetic grid. J metamorphic Geol 20:99–118

    Google Scholar 

  • Pereira MD, Bea F (1994) Cordierite producing reactions in the Peña Negra complex, Central Spain, Avila Batholith, Central Spain: the key role of cordierite in low pressure anatexis. Can Mineral 32:763–780

    Google Scholar 

  • Ramírez JA, Menéndez LG (1999) A geochemical study of two peraluminous granites from south-central Iberia: the Nisa-Alburquerque and Jalama batholiths. Min Mag 63(1):85–104

    Google Scholar 

  • Ramsay JG (1989) Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J Struct Geol 11:191–209

    Article  Google Scholar 

  • Rodríguez Alonso MD, Diez Balda MA, Perejón A, Pieren A, Liñan E, López Diaz F, Moreno F, Gámez Vintaned JA, González Lodeiro F, Martínez Poyatos D, Vegas R (2004) Dominio del Complejo Esquisto Grauváquico: Estratigrafía. La secuencia litoestratígráfica del Neoproterozoico—Cámbrico Inferior. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 78–81

  • Rodríguez Fernández LR, Bellido F, Díez A, González Clavijo E, Heredia N, López F, Marín C, Martín-Parra LM, Martín-Serrano A, Matas J, Montes M, Nozal F, Quintana L, Roldán F, Rubio F, Salazar A (2004) Mapa Tectónico de España a escala 1: 200.000. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid

  • Rodríguez Suárez JI (1985) Petrografía, Blástesis, y Deformación en la Aureola de Contacto del plutón de Nisa-Alburquerque. M.SC thesis. Universidad de Oviedo, Spain

  • Romeo I, Capote R, Tejero R, Lunar R, Quesada C (2006) Magma emplacement in transpression: the Santa Olalla Igneous Complex (Ossa-Morena Zone, SW Iberia). J Struct Geol 28:1821–1834

    Article  Google Scholar 

  • Simancas JF, Galindo-Zaldívar J, Azor A (2000) Three-dimensional shape and emplacement of La Cardenchosa deformed pluton (Variscan Orogen, southwestern Iberian Massif). J Struct Geol 22:489–503

    Article  Google Scholar 

  • Simancas JF, Martínez Poyatos D, Expósito I, Azor A, González Lodeiro F (2001) The structure of a major suture zone in the SW Iberian Massif: the Ossa-Morena/Central Iberian contact. Tectonophysics 332:295–308

    Article  Google Scholar 

  • Solá RA (2007) Relaçoes Petrogeoquímicas Dos Maciços Graníticos do NE Alentejano. PhD thesis. University of Coimbra, Portugal

  • Solá RA, Williams IS, Neiva AMR, Ribeiro ML (2009) U-Th-Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late variscan granitoids, Nisa-Albuquerque batholith, SW Iberian Massif: petrologic and regional implications. Lithos 111:156–167

    Article  Google Scholar 

  • Vigneresse JL (1990) Use and misuse of geophysical data to determine the shape at depth of granitic intrusions. Geol J 25:249–260

    Article  Google Scholar 

  • Vigneresse JL, Bouchez JL (1997) Successive granitic magma batches during pluton emplacement: the case of Cabeza de Araya (Spain). J Petrol 38(12):1767–1776

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Wolf BM, London D (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Mineral Petrol 130:12–30

    Article  Google Scholar 

  • Yardley BWD (1989) Metamorphic petrology. Longman Earth Sciences Series, England

    Google Scholar 

  • Yenes M, Álvarez F, Gutierrez-Alonso G (1999) Granite emplacement in orogenic compressional conditions: the La Alberca-Bejar granitic area (Spanish Central System, Variscan Iberian Belt). J Struct Geol 21:1419–1440

    Article  Google Scholar 

  • Young GM, Nesbitt HW (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J Sediment Res 68(3):448–455

    Google Scholar 

Download references

Acknowledgments

We thank Jose María Toyos and Augusto Rodríguez García for discussions and text corrections on a preliminary manuscript. We appreciate and thank the critical and constructive reviews made by Dr. Bernardo Cesare and Dr. Javier Escuder-Viruete that led to a significant improvement of this paper. We also thank Dr. Wolf-Christian Dullo and Dr. Ingo Braun for the editorial handling of the manuscript. This research has been financed by the Spanish Ministry of Science and Innovation through grants CGL2007-63101/BTE and TOPO-IBERIA CONSOLIDER-INGENIO 2010 CSD2006-00041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís González Menéndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez, L.G., Azor, A., Ordóñez, A.R. et al. The metamorphic aureole of the Nisa-Alburquerque batholith (SW Iberia): implications for deep structure and emplacement mode. Int J Earth Sci (Geol Rundsch) 100, 1533–1550 (2011). https://doi.org/10.1007/s00531-010-0568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0568-4

Keywords

Navigation