Skip to main content

Advertisement

Log in

A new method in palaeoecology: fish community structure indicates environmental changes

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A new method to reconstruct aquatic palaeoenvironments is presented. It is based on a non-metrical ‘fish environment reconstruction index’ (FERI), calculated for the total fish community recorded at an archaeological site. As an example, a FERI is generated for the Baltic Sea using the ecological requirements of northern European fish species. The present study evaluates the proposed method by using fish bone assemblages from a region (the middle Holocene Baltic Sea coast) with well-studied hydrographic history. The bones originate from consecutive human riparian and coastal settlements of hunter-gatherers. The results obtained for the parameters salinity and sediment structure correlate well with geological knowledge. The new method shows a successive change from freshwater to brackish and finally to nearly marine conditions before, during, and towards the end of the marine transgression that created the present Baltic Sea. Additionally, a shift in the sediment structure from muddy to sandy/rocky conditions is recognisable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Björck S (1995) A review of the history of the Baltic Sea 13.0–8.0 ka BP. Quat Int 27:19–40

    Article  Google Scholar 

  • Björck N, Hjärtner-Holdar E (2008) Mellan hav och skog. Högmossen, en stenåldersmiljö vid en skimrande strand i norra Uppland. Riksantikvarieämbetet, UV-Uppsala. Arkeologi E4 Uppland Studier 6:99–138

    Google Scholar 

  • Broughton JM, Madsen DB, Quade J (2000) Fish remains from homestead cave and lake levels of the past 13,000 years in the Bonneville Basin. Quat Res 53:392–401

    Article  Google Scholar 

  • Butler VL (1994) The role of bone density in structuring prehistoric Salmon bone assemblages. J Archaeol Sci 21:413–424

    Article  Google Scholar 

  • Casteel RW (1976) Comparison of column and whole unit samples for recovering fish remains. World Archaeol 8:192–196

    Article  Google Scholar 

  • Curry A (2006) A Stone Age world beneath the Baltic Sea. Science 314:1533–1535

    Article  Google Scholar 

  • Enghoff IB (1994) Fishing in Denmark during the Ertebølle period. Int J Osteoarchaeol 4:65–96

    Article  Google Scholar 

  • Enghoff IB (2007) Viking age fishing in Denmark, with particular focus on the freshwater site Viborg, methods of excavation, and smelt fishing. In: Hüster-Plogmann H (ed). The role of fish in ancient time. Proceedings of the 13th meeting of the ICAZ fish remains working group in October 4th–9th, Basel/August 2005, pp 69–76 (Marie Leidorf: Rahden/Westf.)

  • Enghoff IB, MacKenzie BR, Nielsen EE (2007) The Danish fish fauna during the warm Atlantic period (ca. 7000–3900 bc): forerunner of future changes? Fish Res 87:167–180

    Article  Google Scholar 

  • Froese R, Pauly D (2007) FishBase. World Wide Web electronic publication. www.fishbase.org, version (08/2007)

  • Gordon EA (1993) Screen size and differential faunal recovery: a Hawaiian example. J Field Archaeol 20:453–460

    Article  Google Scholar 

  • Gustafsson B, Westman P (2002) On the causes for salinity variations in the Baltic Sea during the last 8500 years. Paleoceanography 17:1–14

    Article  Google Scholar 

  • Harff J, Lampe R, Lemke W, Lübke H, Lüth F, Meyer M, Tauber F (2005) The Baltic Sea—a model ocean to study interrelations of geosphere, ecosphere, and anthroposphere in the coastal zone. J Coast Res 21:441–446

    Article  Google Scholar 

  • Harff J, Lemke W, Lampe R, Lüth F, Lübke R, Meyer M, Tauber F, Schmölcke U (2007) The Baltic Sea coast—a model of interrelations among geosphere, climate, and anthroposphere. In: Harff J, Hay WW, Tetzlaff DM (eds). Coastline change—interrelation of climate and geological processes. The Geological Society of America, pp 133–143

  • Harff J, Meyer M, Lampe R (2008) Changing Holocene coastal zones of the Baltic Sea—a modelling approach. Reports of the Roman-Germanic Commission (in press)

  • Hartz S, Lübke H (2006) New evidence for a chronostratigraphic division of the Ertebølle culture and the earliest funnel beaker culture on the Southern Mecklenburg Bay. In: Kind C-J (ed) After the ice age. Settlements, subsistence and social development in the Mesolithic of Central Europe. Konrad Theiss Verlag, Stuttgart, pp 59–74

    Google Scholar 

  • Janke W, Lampe R (2000) The sea-level rise on the South Baltic coast over the past 8000 years—new results and new questions. Beiträge zur Ur- und Frühgeschichte Mecklenburg-Vorpommerns 35:393–398

    Google Scholar 

  • Jensen JB, Bennike O, Witkowski A, Lemke W, Kuijpers A (1999) Early Holocene history of the south-western Baltic Sea: the Ancylus Lake stage. Boreas 28:437–453

    Article  Google Scholar 

  • Khlebovich VV (1968) Some peculiar features of the hydrochemical regime and the fauna of mesohaline waters. Mar Biol 2:47–49

    Article  Google Scholar 

  • Kliewe H, Janke W (1982) Der holozäne Wasserspiegelanstieg der Ostsee im nordöstlichen Küstengebiet der DDR. Petermanns Geogr Mitt 126:65–74

    Google Scholar 

  • Lam YM, Pearson OM (2005) Bone density studies and the interpretation of the faunal record. Evol Anthropol 14:99–108

    Article  Google Scholar 

  • Lampe R, Endtmann E, Janke W, Meyer H, Lübke H, Harff J, Lemke W (2005) A new relative sea-level curve for the Wismar Bay, N-German Baltic coast. Meyniana 57:5–35

    Google Scholar 

  • Lappalaien A, Shurukhin A, Alekseev G, Rinne J (2000) Coastal fish community along the northern coast of the Gulf of Finland, Baltic Sea: responses to salinity and eutrophication. Int Rev Hydrobiol 85:687–696

    Article  Google Scholar 

  • Lubinski PM (1996) Fish heads, fish heads: an experiment on differential bone preservation in a Salmonid fish. J Archaeol Sci 23:175–181

    Article  Google Scholar 

  • Lübke H (2002) Submarine Stone Age settlements as indicators of sea-level changes and the coastal evolution of the Wismar Bay area. In: Lampe R (ed) Holocene evolution of the South-Western Baltic Coast—geological, archaeological and Palaeo-environmental aspects. Greifswalder Geographische Arbeiten Band 27, Greifswald, pp 203–210

    Google Scholar 

  • Lübke H (2003) New investigations on submarine stone age settlements in the Wismar Bay Area. In: Kindgren H, Knutsson K, Larsson L, Loeffler D, Åkerlund A (eds). Mesolithic on the move. Proceedings of the 6th international conference on the Mesolithic in Europe, Stockholm 2000. Oxbow, Oxford, pp 69–78

  • Lyman RL (1984) Bone density and differential survivorship of fossil classes. J Anthropol Archaeol 3:259–299

    Article  Google Scholar 

  • Mann RHK (1996) Environmental requirements of European non-salmonid fishes in rivers. Hydrobiologia 323:223–235

    Article  Google Scholar 

  • Matuszek JE, Goodier J, Wales DA (1990) The occurrence of cyprinidae and other small fish species in relation to pH in Ontario Lakes. Trans Am Fish Soc 119:850–861

    Article  Google Scholar 

  • Meyer M, Harff M (2005) Modelling Palaeo coastline changes of the Baltic Sea. J Coast Res 21:598–609

    Article  Google Scholar 

  • Nellen W (1968) Der Fischbestand und die Fischwirtschaft in der Schlei. Biologie, Wachstum, Nahrung und Fangerträge der häufigsten Fischarten. Schr Naturw Ver Schlesw Holst 38:5–50

    Google Scholar 

  • Neubaur R, Jaeckel S (1936) Die Schlei und ihre Fischereiwirtschaft. Schr Naturw Ver Schlesw Holst 21:440–482

    Google Scholar 

  • Noe-Nygaard N (1995) A dynamic model for changes in palaeoclimate, environment and ecology in Late and Postglacial time, Sjælland, Denmark. A multi-disciplinary study. Fossil Strata 37

  • Nordquist B (2000) Coastal adaptations in the mesolithic. A study of coastal sites with organic remains from the Boreal and Atlantic periods in Western Sweden. Gotarc, Series B, No 13. Göteborg University, Göteborg

    Google Scholar 

  • Odum WE (1988) Comparative ecology of tidal freshwater and salt marshes. Annu Rev Ecol Syst 19:147–176

    Article  Google Scholar 

  • Ojaveer E, Lindroth A, Bagge O, Lehtonen H, Toivonen J (1981) Fishes and fisheries. In: Voipo A (ed) The Baltic Sea. Elsevier, Amsterdam, pp 275–349

    Chapter  Google Scholar 

  • Olson C (2008) Neolithic fisheries. Osteoarchaeology of fish remains in the Baltic Sea region. Theses and papers in Osteoarchaeology No. 5, Stockholm University

  • Reitz EJ, Wing ES (2001) Zooarchaeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Zool Anzeiger (Suppl 7):34–74

  • Remane A, Schlieper C (1971) Biology of brackish water. Wiley-Interscience, New York

    Google Scholar 

  • Rößler D (2006) Reconstruction of the Littorina transgression in the Western Baltic Sea. Marine Science Reports 67. Baltic Sea Research Institute, Warnemünde

  • Rößler D, Lemke W, Moros M (2009) Reconstruction of the Littorina transgression in the Western Baltic Sea. Reports of the Roman-Germanic Commission (in press)

  • Schmölcke U, Heinrich D (2006) Die Tierknochen aus dem Hafen von Haithabu–Schlämmfunde. In: Schietzel K (ed) Untersuchungen an Skelettresten von Tieren aus dem Hafen von Haithabu. Wachholtz Verlag, Neumünster, pp 195–240

  • Schmölcke U, Endtmann E, Klooss S, Meyer M, Michaelis D, Rickert B-H, Rößler D (2006) Changes of sea level, landscape and culture: the south-western Baltic area between 8800 and 4000 BC. Palaeogeogr Palaeoclimatol Palaeoecol 240:423–438

    Article  Google Scholar 

  • Schmölcke U, Glykou A, Heinrich D (2009) Faunal development in the south-western Baltic area. Reports of the Roman-Germanic Commission (in press)

  • Sohlenius G, Emeis K-C, Andrén E, Andrén T, Kohly A (2001) Development of anoxia during the Holocene fresh-brackish water transition in the Baltic Sea. Mar Geol 177:221–242

    Article  Google Scholar 

  • Stahl PW (1996) The recovery and interpretation of microvertebrate bone assemblages from archaeological contexts. J Archaeol Method Theory 3:31–75

    Article  Google Scholar 

  • Terberger T (2006) The mesolithic hunter-fisher-gatherers on the Northern German Plain. In: Møller Hansen K, Buck Petersen K (eds). Across the western Baltic. Proceedings from an archaeological conference in Vordingborg. Sydsjællands Museum, Vordingborg, pp 111–184

  • Tunnicliffe V, O’Connell JM, McQuoid MR (2001) A Holocene record of marine fish remains from the Northeastern Pacific. Mar Geol 174:197–210

    Article  Google Scholar 

  • Wagner CM (1999) Expression of the estuarine species minimum in littoral fish assemblages of the lower Chesapeake Bay tributaries. Estuaries 22:304–312

    Article  Google Scholar 

  • Wheeler A, Jones AKG (1989) Cambridge manuals in archaeology: fishes. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

We are grateful to H. Lübke and S. Hartz for their detailed information about the Mesolithic settlements, to B. Gustafsson and S. Wastegård for information about the Holocene salinity of the Baltic Sea, and to E. A. Nikulina for valuable comments and discussions. The German Research Foundation (DFG) supported parts of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schmölcke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmölcke, U., Ritchie, K. A new method in palaeoecology: fish community structure indicates environmental changes. Int J Earth Sci (Geol Rundsch) 99, 1763–1772 (2010). https://doi.org/10.1007/s00531-010-0524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0524-3

Keywords

Navigation