Skip to main content

Advertisement

Log in

Thermal and redox state of the subcontinental lithospheric mantle of NE Spain from thermobarometric data on mantle xenoliths

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mantle xenoliths in within-plate Cenozoic alkaline mafic lavas from NE Spain are used to assess the local subcontinental lithospheric mantle geotherm and the influence of melting and metasomatism on its oxidation state. The xenoliths are mainly anhydrous spinel lherzolites and harzburgites and gradations between, with minor pyroxenites. Most types show protogranular textures, but transitional protogranular–porphyroclastic and equigranular lherzolites also exist. Different thermometers used in the estimates provide higher subsolidus equilibrium temperatures for harzburgites (1,062 ± 29°C) than for lherzolites (972 ± 89°C), although there is overlap; the lowest temperatures correspond to porphyroclastic lherzolites, whereas pyroxenites give the highest temperatures (up to 1,257°C). Maximum pressures for subsolidus equilibrium of peridotites are at 2.0–1.8 GPa. Later they followed adiabatic decompression and harzburgites registered lower pressures (1.02 ± 0.19 GPa) than lherzolites (1.41 ± 0.27 GPa). One pyroxenite gives values consistent with the spinel lherzolite field (1.08 GPa). The shallowest barometric data are in agreement with the highest local conductive geotherms, which implies that the lithosphere–asthenosphere boundary is at 70–60 km minimum depth. Higher equilibrium temperatures for the harzburgites could be explained by the existence of mafic magma bodies or dykes at the lower crust–mantle boundary. Paleo-fO2 conditions during partial melting as inferred from the covariation between V and MgO concentrations are mainly between QFM−1 and QFM−2 in log units. However, most thermobarometric fO2 estimates are between QFM−1 and QFM+1, suggesting oxidation caused by later metasomatism during uplift and cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alibert C (1985) A Sr–Nd isotope and REE study of late Triassic dolerites from the Pyrenees (France) and the Messejana Dyke (Spain and Portugal). Earth Planet Sci Lett 73:81–90

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Araña V, Aparicio A, Martín Escorza C, Garcia Cacho L, Ortiz R, Vaquer R, Barberi F, Ferrara G, Albert J, Gassiot X (1983) El volcanismo neógeno-cuaternario de Cataluña: caracteres estructurales, petrológicos y geodinámicos. Acta Geol Hispánica 18:1–17

    Google Scholar 

  • Ayala C, Torne M, Pous J (2003) The lithosphere–asthenosphere boundary in the western Mediterranean from 3D joint gravity and geoid modeling: tectonic implications. Earth Planet Sci Lett 209:275–290. doi:10.1016/S0012-821X(03)00093-1

    Article  Google Scholar 

  • Ballhaus C (1993) Oxidation states of the lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Bianchini G, Beccaluva L, Bonadiman C, Nowell G, Pearson G, Siena F, Wilson M (2007) Evidence of diverse depletion and metasomatic events in harzburgite-lherzolite mantle xenoliths from the Iberian plate (Olot, NE Spain): Implications for lithosphere accretionary processes. Lithos 94:25–45. doi:10.1016/j.lithos.2006.06.008

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase Lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Cabal J, Fernández M (1995) Heat flow and regional uplift at the north-eastern border of the Ebro basin, NE Spain. Geophys J Int 121:393–403

    Article  Google Scholar 

  • Canil D, Johnston ST, Mihalynuk M (2006) Mantle redox in Cordilleran ophiolites as a record of oxygen fugacity during partial melting and the lifetime of mantle lithosphere. Earth Planet Sci Lett 248:91–102. doi:10.1016/j.epsl.2006.04.038

    Article  Google Scholar 

  • Dañobeitia JJ, Arguedas M, Gallart J, Banda E, Makris J (1992) Deep crustal configuration of the Valencia trough and its Iberian and Balearic borders from extensive refraction and wide-angle reflection seismic profiling. Tectonophysics 302:37–55

    Article  Google Scholar 

  • Donville B (1973a) Ages potassium- argon des vulcanites du Haut Ampurdan (Nord- Est de l’Espagne). Implications stratigraphiques. C R Acad Sci Paris 276:2497–2500

    Google Scholar 

  • Donville B (1973b) Ages potassium-argon des vulcanites du Bas Ampurdan. C R Acad Sci Paris 276:3253–3256

    Google Scholar 

  • Donville B (1973c) Ages potassium–argon des roches volcaniques de la depresion de La Selva (NE de l’Espagne). C R Acad Sci Paris 277:1–4

    Google Scholar 

  • Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336

    Article  Google Scholar 

  • Fabriès J, Figueroa O, Lorand JP (1987) Petrology and thermal history of highly deformed mantle xenoliths from the Montferrier Basanites, Languedoc, Southern France: a comparison with ultramafic complexes from the Noth Pyrenean Zone. J Petrol 28:887–919

    Google Scholar 

  • Fabriès J, Lorand J-P, Bodinier J-L (1998) Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 292:145–167

    Article  Google Scholar 

  • Foley SF, Andronikov AV, Jacob DE, Melzer S (2006) Evidence from Antartic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift. Geoch Cosmoch Acta 70:3096–3120. doi:10.1016/j.gca.2006.03.010

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Galán G, Oliveras V, Paterson BA (2008) Types of metasomatism in mantle xenoliths enclosed in Neogene-Quaternary alkaline mafic lavas from Catalonia (NE Spain). In: Coltorti M, Grégoire M (eds) Metasomatism in Oceanic and Continental Lithospheric Mantle. Geological Society, London, Special Publication 293, pp 121–153. doi:10.1144/SP293.7

  • Gallart J, Olivera C, Correig AM (1984) Aproximación geofísica a la Zona Volcánica de Olot (Girona). Estudio local de sismicidad. Rev Geofís 40:205–226

    Google Scholar 

  • Gallart J, Pous J, Boix F, Hirn A (1991) Physical constraints on the crustal structure of the Olot Volcanic Area, northeastern Iberian Peninsula. J Volcanol Geotherm Res 47:33–44

    Article  Google Scholar 

  • Gasparik T (1987) Orthopyroxene thermobarometry in simple and complex systems. Contrib Mineral Petrol 96:357–370

    Article  Google Scholar 

  • Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136:281–296

    Article  Google Scholar 

  • Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J Petrol 85:279–288

    Google Scholar 

  • Klemme S, O’Neill H St C (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol 138:237–248

    Article  Google Scholar 

  • Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geoch Cosmoch Acta 54:2375–2388

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Lago M, Arranz E, Pocoví A, Galé C, Gil-Imaz A (2004) Permian magmatism and basin dynamics in the southern Pyrenees: a record of the transition from late Variscan transtension to early Alpine extension. In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-carboniferous magmatism and rifting in Europe. Geological Society, London, Special Publication 223, pp 439–464. doi:10.1144/GSL.2004.223.01.19

  • Le Maitre RW (ed) (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee C-TA, Brandon AD, Norman M (2003) Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geoch Cosmoch Acta 67:3045–3064

    Article  Google Scholar 

  • López Ruiz J, Rodríguez Badiola E (1985) La Región Volcánica Mio- Pleistocena del NE de España. Estud Geol 41:105–126

    Article  Google Scholar 

  • Lucazeau F, Vasseur G, Bayer R (1984) Interpretation of heat flow data in the French Massif Central. Tectonophysics 103:99–119

    Article  Google Scholar 

  • Martí J, Pujadas A, Ferrés D, Planagumà L, Mallarach JM (2001) El vulcanisme. Guia de camp de la Zona Volcànica de la Garrotxa, 2nd edn. Parc Natural de la Zona Volcànica de la Garrotxa, Generalitat de Catalunya, Departament de Medi Ambient

    Google Scholar 

  • McKenzie D, Bickle MJ (1989) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • Mercier JCC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39:55–76

    Article  Google Scholar 

  • Neumann E-R, Martí J, Mitjavila J, Wulff-Pedersen E (1999) Origin and implications of mafic xenoliths associated with Cenozoic extension-related volcanism in the Valencia Trough, NE Spain. Mineral Petrol 65:113–139

    Article  Google Scholar 

  • O’Neill H St C (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194

    Google Scholar 

  • O’Reilly SY, Griffin WL (1985) A xenolith derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 11:41–63

    Google Scholar 

  • O’Reilly SY, Chen D, Griffin WL, Ryan CG (1997) Minor elements in olivine from spinel lherzolites xenoliths: implications for thermobarometry. Mineral Mag 61:257–269

    Article  Google Scholar 

  • Oliveras V, Galán G (2006) Petrologia y mineralogia de los xenolitos mantélicos del volcán la Banya del Boc (Girona). Geogaceta 40:107–110

    Google Scholar 

  • Oliveras V, Galán G (2007) Condiciones P-T en xenolitos mantélicos de los volcanes la Banya del Boc i el Puig d’Adri (Girona). Geogaceta 43:19–22

    Google Scholar 

  • Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423

    Article  Google Scholar 

  • Pike JEN, Schwarzman EC (1976) Classification of textures in ultramafic xenoliths. J Geol 85:49–61

    Article  Google Scholar 

  • Rossy M, Azambre B, Albarede F (1992) REE and Sr–Nd isotope geochemistry of the alkaline magmatism from the Cretaceous North Pyrenean Rift Zone (France-Spain). Chem Geol 97:33–46

    Article  Google Scholar 

  • Seitz H-M, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths: new empirical geothermometers. Geoch Cosmoch Acta 63:3967–3982

    Article  Google Scholar 

  • Seyler M, Bonatti E (1994) Na, Al4 and Al6 in clinopyroxenes of continental and suboceanic ridge peridotites: a clue to different melting process in the mantle? Earth Planet Sci Lett 122:281–289

    Article  Google Scholar 

  • Smith D (1999) Temperatures and pressures of mineral equilibration in peridotite xenoliths: review, discussion, and implications. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd. The Geochemical Society, Special Publication 6, pp 171–188

  • Sobolev SV, Zeyen G, Granet M, Achauer U, Bauer C, Werling F, Altherr R, Fuchs K (1997) Upper mantle temperatures and lithosphere-asthenosphere system beneath the French Massif Central constrained by seismic, gravity, petrologic and thermal observations. Tectonophysics 275:143–164

    Article  Google Scholar 

  • Sobolev VN, McCammon CA, Taylor LA, Snyder GA, Sobolev NV (1999) Precise Mössbauer milliprobe determination of ferric iron in rock forming minerals and limitations of electron microprobe analysis. Am Mineral 84:78–85

    Google Scholar 

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. N Jb Miner Abh 172:381–408

    Google Scholar 

  • Werling F, Altherr R (1997) Thermal evolution of the lithosphere beneath the French Massif Central as deduced from geothermobarometry on mantle xenoliths. Tectonophysics 275:119–141

    Article  Google Scholar 

  • Wilson M, Downes H (1991) Tertiary–quaternary extension-related alkaline magmatism in western and central Europe. J Petrol 32:811–849

    Google Scholar 

  • Witt-Eickschen G, Seck HA (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106:431–439

    Article  Google Scholar 

  • Wood BJ (1991) Oxygen barometry of spinel peridotites. In: Lindsley DH (ed) Reviews in mineralogy. Mineralogical Society of America 25, pp 417–431

  • Wood BJ, Taras Bryndzia L, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248:337–345

    Article  Google Scholar 

  • Woodland AB, Kornprobst J, Tabit A (2006) Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89:222–241. doi:10.1016/j.lithos.2005.12.014

    Article  Google Scholar 

  • Zeyen HJ, Banda E, Klingelé E (1991) Interpretation of magnetic anomalies in the volcanic area of northeastern Spain. Tectonophysics 192:201–210

    Article  Google Scholar 

  • Ziegler PA (1994) Cenozoic rift system of western and central Europe: an overview. Geol Mijnbow 73:99–127

    Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the projects CGL2006-09509/BTE of the “Dirección General de Investigacion, Ministerio de Educación y Ciencia, España”, and 2005SGR-01011 of “Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya”. Comments by C-J De Hoog and M Grégoire were very helpful in improving a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gumer Galán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galán, G., Oliveras, V. & Paterson, B.A. Thermal and redox state of the subcontinental lithospheric mantle of NE Spain from thermobarometric data on mantle xenoliths. Int J Earth Sci (Geol Rundsch) 100, 81–106 (2011). https://doi.org/10.1007/s00531-009-0503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0503-8

Keywords

Navigation