International Journal of Earth Sciences

, Volume 99, Supplement 1, pp 265–278 | Cite as

Magnetic fabrics indicating Late Quaternary seismicity in the Himalayan foothills

  • R. Jayangondaperumal
  • Ashok Kumar Dubey
  • B. Senthil Kumar
  • S. G. Wesnousky
  • S. J. Sangode
Original Paper


The anisotropy of magnetic susceptibility (AMS) study was performed on soft sediment samples from a trenched fault zone across the Himalayan frontal thrust (HFT), western Himalaya. AMS orientation of Kmin axes in the trench sediments is consistent with lateral shortening revealed by geometry of deformed regional structures and recent earthquakes. Well-defined vertical magnetic foliation parallel to the flexure cleavage in which a vertical magnetic lineation is developed, high anisotropy, and triaxial ellipsoids suggest large overprinting of earthquake-related fabrics. The AMS data suggest a gradual variation from layer parallel shortening (LPS) at a distance from the fault trace to a simple shear fabric close to the fault trace. An abrupt change in the shortening direction (Kmin) from NE–SW to E–W suggests a juxtaposition of pre-existing layer parallel shortening fabric, and bending-related flexure associated with an earthquake. Hence the orientation pattern of magnetic susceptibility axes helps in identifying co-seismic structures in Late Holocene surface sediments.


Anisotropy of magnetic susceptibility (AMS) Earthquake fabric Himalaya Paleoseismicity 


  1. Aubourg C, Rochette P, Vialon P (1991) Subtle stretching lineation revealed by magnetic fabric of Callovian-Oxfordian black shales (French Alps). Tectonophysics 185:211–223CrossRefGoogle Scholar
  2. Aubourg C, Rochette P, Stephan JF, Popoff M, Chabert-Pelline C (1999) The magnetic fabric of weakly deformed Late Jurassic shales from the southern sub alpine chains (French Alps): evidence of SW-directed transport direction. Tectonophysics 307:15–32CrossRefGoogle Scholar
  3. Averbuch O, Frizon de Lamotte D, Kissel C (1992) Magnetic fabric as a structural indicator of the deformation path within a fold-thrust structure: a test case from the Corbieres (NE Pyrenees, France). J Struct Geol 14:461–474CrossRefGoogle Scholar
  4. Banerjee P, Burgmann R (2002) Convergence across northwest Himalaya from GPS measurements. Geophys Res Lett 29:13. doi:10.1029/2002GL015184 CrossRefGoogle Scholar
  5. Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain—a review. Tectonophysics 156:1–20CrossRefGoogle Scholar
  6. Borradaile GJ (1991) Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pageoph 135:15–29CrossRefGoogle Scholar
  7. Borradaile GJ, Hamilton T (2004) Magnetic fabrics may proxy as neotectonic stress trajectories, Polis rift, Cyprus. Tectonics 23 TC1001. doi:10.1029/2002TC001434
  8. Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93CrossRefGoogle Scholar
  9. De Wall H, Warr LN (2004) Oblique magnetic fabric in siderite-bearing politic rocks of the Upper Carboniferous Culm Basin, SW England: an indicator for palaeo-fluid migration? In: Martin-Hernandez F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabrics: methods and applications, vol 238. Geological Society of London, Special Publication, pp 493–507Google Scholar
  10. Dubey AK (2004) Structural evolution of the Himalaya: field studies, experimental models, and implications for seismicity. Himalayan Geol 25:33–50Google Scholar
  11. Dunlop DJ, Özdemir O (2001) Rock magnetism. Cambridge University Press, CambridgeGoogle Scholar
  12. Gansser A (1964) Geology of the Himalayas. Wiley Interscience, LondonGoogle Scholar
  13. Graham JW (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart JS, Smith TJ (eds) The earth beneath the continents, vol 10. Geophysical Monographs, pp 627–648Google Scholar
  14. Hardebeck JL, Hauksson E (2001) Crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106:21859–21882CrossRefGoogle Scholar
  15. Hirt AM, Lowrie W, Clendenen WS, Kligfield R (1988) The correlation of magnetic anisotropy with strain in the Chelmsford Formation of the Sudbury Basin, Ontario. Tectonophysics 145:177–189CrossRefGoogle Scholar
  16. Housen BA, Richter C, van der Pluijm BA (1993) Composite magnetic anisotropy fabrics: experiments, numerical models, and implications for the quantification of rock fabrics. Tectonophysics 200:1–12CrossRefGoogle Scholar
  17. Housen BA, Tobin HJ, Labaume P, Leitch EC, Maltman A (1996) ODP leg 156 shipboard science party Strain decoupling across the decollement of the Barbados accretionary prism. Geology 24(2):127–130CrossRefGoogle Scholar
  18. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82CrossRefGoogle Scholar
  19. Hrouda F, Jelinek V, Hruskova L (1990) A package of programs for statistical evaluation of magnetic data using IBM-PC computers. Eos Trans AGU 71(43):1289Google Scholar
  20. Jayangondaperumal R, Thakur VC (2008) Kinematics of coseismic secondary surface fractures on southeastward extension of the rupture zone of Kashmir earthquake. Tectonophysics 446:61–76CrossRefGoogle Scholar
  21. Jelinek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Brno GeofyzikaGoogle Scholar
  22. Jelinek V (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics 79:63–67CrossRefGoogle Scholar
  23. Kissel C, Barrier E, Laj C, Lee TO (1986) Magnetic fabric in “undeformed” marine clays from compressional zones. Tectonics 5:769–781CrossRefGoogle Scholar
  24. Kligfield R, Owens WH, Lowrie W (1981) Magnetic susceptibility ansiostropy, strain and progressive deformation in Permian sediments from the Maritime Alps (France). Earth Planet Sci Lett 55:181–189CrossRefGoogle Scholar
  25. Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res 111:B03304. doi:10.1029/2004JB003309 CrossRefGoogle Scholar
  26. Lave J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great medieval earthquake (~1100 A.D.) in the central Himalayas, Nepal. Science 307:1302–1305CrossRefGoogle Scholar
  27. Lee TQ, Angelier J (2000) Tectonic significance of magnetic susceptibility fabrics in Plio-Quaternary mudstones of southwestern foothills, Taiwan. Earth Planet Space 52:527–538Google Scholar
  28. Lee TQ, Kissel C, Laj, Horng CS, Lue YT (1990) Magnetic fabric analysis of the Plio Pleistocene sedimentary formations of the coastal range of Taiwan. Earth Planet Sci Lett 98:23–32Google Scholar
  29. Levi S, Nabelek J, Yeats RS (2005) Paleomagnetism-based limits on earthquake magnitudes in northwestern metropolitan Los Angeles, California, USA. Geology 33(5):401–404. doi:10.1130/G21190.1 CrossRefGoogle Scholar
  30. Levi S, Weinberger R, Alfa T, Eyal Y, Marco S (2006) Earthquake-induced clastic dikes detected by anisotropy of magnetic susceptibility. Geology 34(2):69–72. doi:10.1130/G22001.1 CrossRefGoogle Scholar
  31. Lüneburg CM, Lampert SA, Lebit HD, Hirt AM, Casey M, Lowrie W (1999) Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics 307:51–74CrossRefGoogle Scholar
  32. Martinez-Diaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356:291–305CrossRefGoogle Scholar
  33. Nakata T (1972) Geomorphic history and crustal movements of the foothills of the Himalayas, vol 22. Science Report Tohoku University, 7th series, pp 39–177Google Scholar
  34. Nelson KD (1998) The Himalaya and Tibetan Plateau: a perspective from project INDEPTH, paper presented at Geological Society of America, 1998 annual meeting. Geological Society of America, BoulderGoogle Scholar
  35. Owens WH (1993) Magnetic fabric studies of samples from Hole 808c, Nankai trough. In: Hill IA, Taira Firth JV (eds) Proceeding of the ocean drilling program, scientific results, ocean drilling program, vol 131, pp 301–310Google Scholar
  36. Parés JM (2004) How deformed are weakly deformed mud rocks? Insights from magnetic anisotropy. In: Martin-Hernandez F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabrics: methods and applications, vol 238. Geological Society, Special Publication, pp 191–203Google Scholar
  37. Parés JM, van der Pluijm BA (2002) Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics 350:283–298CrossRefGoogle Scholar
  38. Parés JM, van der Pluijm BA (2003) Magnetic fabrics in low-strain mud rocks: AMS of pencil structures in the Knobs Formation, mud rocks (Valley and Ridge Province, US Appalachians). J Struct Geol 25:1349–1358CrossRefGoogle Scholar
  39. Parés JM, van der Pluijm BA, Dinares-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics 307:1–14CrossRefGoogle Scholar
  40. Philip H, Meghraoui M (1983) Structural analysis and interpretation of the surface deformations of the EL ASNAM earthquake of OCTOBER 10, 1980. Tectonics 2(1):17–49CrossRefGoogle Scholar
  41. Rathore JS (1980) The magnetic fabric of some slates from the Borrodale volcanic group in the English Lake District and their correlations with strain. Tectonophysics 67:207–220CrossRefGoogle Scholar
  42. Robion P, Grelaud S, Frizon de Lamotte D (2007) Pre-folding magnetic fabrics in fold-and-thrust belts: Why the apparent internal deformation of the sedimentary rocks from the Minervois basin (NE-Pyrenees, France) is so high compared to the Potwar basin (SW-Himalaya, Pakistan)? Sed Geol 196:181–200CrossRefGoogle Scholar
  43. Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of the anisotropy of magnetic susceptibility. Rev Geophys 30:209–226CrossRefGoogle Scholar
  44. Sagnotti L, Speranza F (1993) Magnetic fabric analysis of the Plio- Pleistocene clayey units of the Sant’ Arcangelo basin, Southern Italy. Phys Earth Planet Inter 77:165–176CrossRefGoogle Scholar
  45. Sagnotti L, Faccenna C, Funiciello R, Mattei M (1994) Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of central Italy. J Struct Geol 16:1243–1257CrossRefGoogle Scholar
  46. Sagnotti L, Speranza F, Winkler A, Mattei M, Funiciello R (1998) Magnetic fabric of clay sediments from the external northern Apennines (Italy). Phys Earth Planet Inter 105:73–93CrossRefGoogle Scholar
  47. Saint-Bezar B, Hebert RL, Aubourg C, Robion P, Swennen R, Frizon de Lamotte D (2002) Magnetic fabric and petrographic investigation of hematite-bearing sandstone with ramp-related folds: examples from the south Atlas Front (Morocco). J Struct Geol 24:1507–1520CrossRefGoogle Scholar
  48. Schwehr K, Tauxe L (2003) Characterization of soft-sediment deformation: detection of cryptoslumps using magnetic methods. Geology 31:203–206CrossRefGoogle Scholar
  49. Seeber L, Armbruster J (1981) Great detachment earthquakes along the Himalayan Arc and long-term forecasting, in earthquake prediction. In: Simpson DW, Richards PG (eds) An international review. American Geophysical Union, Washington, DC, pp 259–277Google Scholar
  50. Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  51. Valdiya KS (1992) The main boundary thrust zone of the Himalaya, India. Annal Tect 6:54–84Google Scholar
  52. Wesnousky SG, Kumar S, Mohindra R, Thakur VC (1999) Uplift and convergence along the Himalayan Frontal thrust of India. Tectonics 18:967–976CrossRefGoogle Scholar
  53. Yeats RS, Hussain A (2006) Surface Features of the Mw 7.6, 8 October 2005 Kashmir earthquake, Northern Himalaya, Pakistan: implications for the Himalayan front. In: Seismological Society of America annual meeting (SSA), San Francisco, CAGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • R. Jayangondaperumal
    • 1
  • Ashok Kumar Dubey
    • 1
  • B. Senthil Kumar
    • 2
  • S. G. Wesnousky
    • 3
  • S. J. Sangode
    • 4
  1. 1.Wadia Institute of Himalayan GeologyDehradunIndia
  2. 2.Indian Institute of SciencesBangaloreIndia
  3. 3.Center for Neotectonic StudiesUniversity of NevadaRenoUSA
  4. 4.Department of GeologyUniversity of PunePuneIndia

Personalised recommendations