Skip to main content
Log in

Late Pleistocene fluvial dynamics in the Hochrhein Valley and in the Upper Rhine Graben: chronological frame

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aitken MJ (1998) Introduction to optical dating. Oxford University Press, Oxford, pp 1–267

    Google Scholar 

  • Auclair M, Lamothe M, Huot S (2003) Measurement of anomalous fading for feldspar IRSL using SAR. Rad Meas 37:487–492

    Article  Google Scholar 

  • Bailey RM, Arnold LJ (2006) Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quat Sci Rev 25:2475–2502

    Article  Google Scholar 

  • Bartz J (1951) Revision des Bohrprofils der Heidelberger Radium-Sol-Therme. Jahresber und wiss Mitt des oberrhein geol Vereins NF 33:101–125

  • Bartz J (1967) Recent movements in the Upper Rheingraben, between Rastatt and Mannheim. In: Rothe JP, Sauer, K (eds) The Rhinegraben progress report 1967. Abh Geol Landesamt Baden-Württemberg 6:1–2

  • Bartz J (1974) Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies JH and Fuchs K (eds) Approaches to Taphrogenesis”. Interunion Comm. Gedynamics Sci Rep 8:78–87

  • Bateman MD, van Huissteden K (1999) The timing of the last-glacial periglacial and aeolian events, Twente, eastern Netherlands. J Quat Sci 14:277–283

    Article  Google Scholar 

  • Bibus E, Frechen M, Kösel M, Rähle W (2007) Das jungpleistozäne Lößprofil von Nußloch (SW-Wand) im Aufschluss der Heidelberger Zement AG. Quat Sci J 56(4):227–255

    Google Scholar 

  • Boenigk W, Frechen M (1998) Zur Geologie der Deckschichten von Kärlich/Mittelrhein. Eiszeit Gegenw 48:38–49

    Google Scholar 

  • Boenigk W, Frechen M (2006) The Pliocene and Quaternary fluvial archives of the Rhine system. Quat Sci Rev 25:550–574

    Article  Google Scholar 

  • Bötter-Jensen L, Andersen CE, Duller GAT, Murray AS (2003) Developments in radiation, stimulation and observation facilities in luminescence measurements. Rad Meas 37:535–541

    Article  Google Scholar 

  • Bork HR (1989) Soil erosion during the past millennium in central Europe and its significance within the geomorphodynamics of the Holocene. Catena Suppl 15:121–131

    Google Scholar 

  • Bram K, Wirsing G, Brost E, Elsass P, Wonik T (2005) Kombinierte geophysikalische Erkundung der Aquifergeometrie und der Chloridverbreitung im quartären Grundwasserleiter des südlichen Oberrheingrabens zwischen Breisach und Fessenheim. Ber Naturf Ges Freiburg i B 95(1):47–69

    Google Scholar 

  • Busschers FS, Weerts HJT, Wallinga J, Cleveringa P, Kasse C, De Wolf H, Cohen K (2005) Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits—fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands J Geosci 84:25–41

    Google Scholar 

  • Busschers FS, Kasse C, van Balen RT, Vandenberghe J, Cohen KM, Weerts HJT, Wallinga J, Johns C, Cleveringa P, Bunnik FPM (2007) Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy. Quat Sci Rev 26:3216–3248

    Article  Google Scholar 

  • Choi SW, Preusser F, Radtke U (2006) Dating of lower terrace sediments from the Middle Rhine area, Germany. Quat Geochron 2:137–142

    Article  Google Scholar 

  • Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Matenco L, Bada G, Garcia-Castellanos D, Hardebol N, Dèzes P, Sokoutis D (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat Sci Rev 24:241–304

    Article  Google Scholar 

  • Cordier S, Frechen M, Harmand D, Beiner M (2005) Middle and Upper Pleistocene fluvial evolution of the Meurthe and Moselle valleys in the Paris basin and the Rhenish Massif. Quaternaire 16(3):201–215

    Google Scholar 

  • Cordier S, Harmand D, Frechen M, Beiner M (2006) Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris basin and Rhenish Massif). Quat Sci Rev 25:1460–1474

    Article  Google Scholar 

  • Demoulin A, Launoy T, Zippelt K (1998) Recent crustal movements in the southern Black Forest. Geol Rundsch 87:43–52

    Article  Google Scholar 

  • Duller GAT (1994) Luminescence dating of sediments using single aliquots: new procedures. Quat Sci Rev 13:149–156

    Article  Google Scholar 

  • Ellwanger D, Lämmermann-Barthel J, Neeb I (2003) Eine landschaftsübergreifende Lockergesteinsgliederung vom Alpenrand zum Oberrhein. GeoArchaeoRhein 4:81–124

    Google Scholar 

  • Ellwanger D, Gabriel D, Hoselmann C, Lämmermann-Barthel J, Weidenfeller M (2005) The Heidelberg drilling project (Upper Rhine Graben, Germany). Quatenaire 16(3):191–199

    Google Scholar 

  • Frechen M (1995) Lumineszenz-Datierungen der pleistozänen Tierfährten von Bottrop-Welheim. Münchner Geowiss Abh 27:63–80

    Google Scholar 

  • Frechen M (1999) Luminescence dating of loessic sediments from the Loess Plateau, China. Geol Rundsch 87:675–684

    Article  Google Scholar 

  • Frechen M, Dodonov AE (1998) Middle and Upper Pleistocene loess chronology in Tadjikistan. Geol Rundsch 87:1–20

    Article  Google Scholar 

  • Frechen M, van den Berg MW (2002) The coversands and the timing of Late Quaternary earthquake events along the Peel Boundary Fault in the Netherlands. Netherlands J Geosci 81:61–70

    Google Scholar 

  • Frechen M, Horváth E, Gábris G (1997) Geochronology of Middle and Upper Pleistocene loess sections in Hungary. Quat Res 48:291–312

    Article  Google Scholar 

  • Frechen M, Vanneste K, Verbeeck K, Paulissen E, Camelbeeck T (2001) The deposition history of the coversands along the Bree Fault Escarpment, NE Belgium. Netherlands J Geosci 80:171–185

    Google Scholar 

  • Frechen M, Oches EA, Kohfeld KE (2003) Loess in Europe—mass accumulation rates during the Last Glacial Period. Quat Sci Rev 22:1835–1857

    Article  Google Scholar 

  • Frechen M, Sierralta M, Oezen D, Urban B (2006) Uranium-series dating of peat from central and northern Europe. In: Sirocko F, Claussen M, Sanchez-Goni MF, Litt T (eds) The climate of past interglacials. Elsevier, Amsterdam, pp 93–117

    Google Scholar 

  • Frechen M, Terhorst B, Rähle W (2007) The Upper Pleistocene loess/palaeosol sequence from Schatthausen in the Upper Neckar valley. Eiszeit Gegenw 56(3):71–86

    Google Scholar 

  • Frechen M, Ellwanger D, Rimkus D, Techmer A (2008) Timing of medieval fluvial aggradation at Bremgarten in the southern Upper Rhine Graben—a test for luminescence dating. Eiszeit Gegenw 57:411–432 (Quat Sci J)

    Google Scholar 

  • Geyh MA (2005) 14C dating—still a challenge for users. Zeitschrift f Geomorph NF 139:63–86

    Google Scholar 

  • Geyh MA, Schlüchter C (1998) Zur Kalibration der 14C-Zeitskala vor 22.000 Jahren v.h. GeoArchaeoRhein 2:139–149

    Google Scholar 

  • Greilich S, Wagner GA (2006) Development of spatially resolved dating technique using HR-OSL. Rad Meas 41:738–743

    Article  Google Scholar 

  • Hagedorn EM (2004) Sedimentpetrographie und Lithofazies der jungtertiären und quartären Sedimente im Oberrheingebiet. Inaugural-Diss, Universität zu Köln, pp 1–310

  • Hagedorn EM, Boenigk W (2008) The Pliocene and Quaternary sedimentary and fluvial history of the Upper Rhine Graben based on heavy mineral analyses. Netherlands J Geosci 87:21–32

    Google Scholar 

  • Hinderer M (2001) Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodin Acta 14:231–263

    Article  Google Scholar 

  • Hinderer M (2003) Large to medium-scale sediment budget models—the Alpenrhein as a case study. In: Lang A, Hennrich K, Dikau R (eds) Lecture notes in earth sciences, vol 101, pp 137–156

  • Huntley DJ, Barril MR (1997) The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15:11–13

    Google Scholar 

  • Huntley DJ, Lamothe M (2001) Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can J Earth Sci 38:1093–1106

    Article  Google Scholar 

  • Huntley DJ, Godfrey-Smith DI, Thewalt MLW (1985) Optical dating of sediments. Nature 313:105–107

    Article  Google Scholar 

  • Huot S, Lamothe M (2003) Variability of infrared stimulated luminescence properties from fractured feldspar grains. Rad Meas 37:499–503

    Article  Google Scholar 

  • Hütt G, Jungner H (1992) Optical and TL dating on glaciofluvial sediments. Quat Sci Rev 11:161–163

    Article  Google Scholar 

  • Hütt G, Jaek I, Tchonka Y (1988) Optical dating K-feldspars optical response stimulation spectra. Quat Sci Rev 7:381–386

    Article  Google Scholar 

  • Hüttner R (1991) Bau und Entwicklung des Oberrheingrabens—Ein Überblick mit historischer Rückschau. Geol Jb E48:17–42

    Google Scholar 

  • Jain M, Murray AS, Bötter-Jensen L (2003) Optically stimulated luminescence dating: how significant is incomplete bleaching in fluvial environments. Quatenaire 15:143–157

    Article  Google Scholar 

  • Klasen N, Fiebig M, Preusser F, Radtke U (2006) Luminescence properties of glaciofluvial sediments from the Bavarian Alpine Foreland. Rad Meas 41:866–870

    Article  Google Scholar 

  • Lämmermann-Barthel J, Hinderer M, Neeb I, Frechen M (2009) Late glacial to Holocene fluvial aggradation and incision in the southern Upper Rhine Graben—climatic and tectonic controls. Quatenaire 20:24–34

    Google Scholar 

  • Lamothe M, Balescu S, Auclair M (1994) Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments. Rad Meas 23:555–561

    Article  Google Scholar 

  • Lamothe M, Auclair M, Hanazaoui C, Huot S (2003) Towards a prediction of long-term anomalous fading of feldspar IRSL. Rad Meas 37:493–498

    Article  Google Scholar 

  • Lang A, Hatté C, Rousseau DD, Antoine P, Fontugne M, Zöller L, Hambach U (2003) High-resolution chronologies for loess: comparing AMS 14C and optical dating results. Quat Sci Rev 22:953–959

    Article  Google Scholar 

  • Lepper K, Agersnap N, Larsen S, McKeever SWS (2000) Equivalent dose distribution analysis of Holocene aeolian and fluvial quartz sands from Central Oklahoma. Rad Meas 32:603–608

    Article  Google Scholar 

  • Lian OB, Roberts RG (2006) Dating the Quaternary: progress in luminescence dating of sediments. Quat Sci Rev 25:2449–2468

    Article  Google Scholar 

  • Litt T, Schmincke HU, Frechen M, Schlüchter C (2008) Quaternary. In: McCann T (ed) Stratigraphy in Europe, monography. Geological Society, London, pp 1287–1340

  • Mayya YS, Morthekai P, Murarib MK, Singhvi AK (2006) Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Rad Meas 41:1032–1039

    Article  Google Scholar 

  • Mercier JL, Bourlès DL, Kalvoda J, Braucher R, Paschen A (1999) Deglaciation of the Vosges dated using 10Be. Acta Univ Carol Geogr 2:139–155

    Google Scholar 

  • Murray AS, Roberts RG (1997) Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth Planet Sci Let 152:163–180

    Article  Google Scholar 

  • Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Rad Meas 32:57–73

    Article  Google Scholar 

  • Murray AS, Olley JM, Caitcheon GG (1995) Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence. Quat Sci Rev 14:365–371

    Article  Google Scholar 

  • Murray AS, Roberts RG, Wintle AG (1997) Equivalent dose measurement using a single aliquot of quartz. Rad Meas 27:171–184

    Article  Google Scholar 

  • Murton JB, Frechen M, Maddy D (2007) Luminescence dating of the last advance of the Laurentide Ice Sheet across the Beaufort Sea coast, NW Canada, during Marine Isotope Stage 2. Can J Earth Sci 44:857–869

    Article  Google Scholar 

  • Olley JM, Catcheon GG, Roberts RG (1999) The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial sediments using optically stimulated luminescence. Rad Meas 20:207–217

    Article  Google Scholar 

  • Peters G, van Balen RT (2007) Pleistocene tectonics inferred from fluvial terraces of the northern Upper rhine Graben, Germany. Tectonophysics 430:41–65

    Article  Google Scholar 

  • Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Rad Meas 23:497–500

    Article  Google Scholar 

  • Prescott JR, Robertson GB (1997) Sediment dating by luminescence: a review. Rad Meas 27:893–922

    Article  Google Scholar 

  • Preusser F (1999) Lumineszenzdatierung fluviatiler Sedimente—Fallbeispiele aus der Schweiz und Norddeutschland. Kölner Forum für Geol Paläont 3(1999):1–62

    Google Scholar 

  • Preusser F, Müller BU, Schlüchter C (2001) Luminescence dating of sediments from the Luthern Valley, Central Switzerland, and implication for the chronology of the last glacial cycle. Quat Res 55:215–222

    Article  Google Scholar 

  • Preusser F, Geyh MA, Schlüchter C (2003) Timing of the Late Pleistocene climate change in lowland Switzerland. Quat Sci Rev 22:1435–1445

    Article  Google Scholar 

  • Preusser F, Blei A, Graf H, Schlüchter C (2007) Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: methodological aspects and stratigraphical conclusions. Boreas 36:130–142

    Article  Google Scholar 

  • Rhodes EJ (2000) Observations of thermal transfer OSL signals in glacigenic quartz. Rad Meas 32:595–602

    Article  Google Scholar 

  • Rhodes EJ, Pownall L (1994) Zeroing of the OSL signal in quartz from young glaciofluvial sediments. Nuclear Tracks and Rad Meas 23:581–585

    Google Scholar 

  • Ruszkiczay-Rüdiger Z (2007) Tectonic and climatic forcing in Quaternary landscape evolution in the Central Pannonian Basin: a quantitative geomorphological, geochronological and structural analysis. Dissertation, Vrije Universiteit Amsterdam, pp 1–149

  • Schaller M, von Blanckenburg F, Veldkamp A, Tebbens LA, Hovius N, Kubik PW (2002) A 20000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet Sci Lett 204:307–320

    Article  Google Scholar 

  • Singarayer JS, Bailey RM, Ward S, Stokes S (2005) Assessing the completeness of optical resetting of quartz OSL in the natural environment. Rad Meas 40:13–25

    Article  Google Scholar 

  • van den Bogaard C, van den Bogaard P, Schmincke HU (1988) Quartärgeologisch-tephrostratigraphische Neuaufnahme und Interpretation des Pleistozänprofils Kärlich. Eiszeit Gegenw 39:62–86

    Google Scholar 

  • von Koenigswald W, Beug HJ (1988) Schlussbetrachtungen. In: von Koenigswald W (ed) Zur Paläoklimatolgie des letzten Interglazials im Nordteil der Oberrheinebene, Paläoklimaforsch, vol 4. Gustav-Fischer Verlag, pp 321–327

  • Wallinga J (2002) Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31:303–323

    Article  Google Scholar 

  • Wallinga J, Murray AS, Wintle AG (2000) The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Rad Meas 32:529–533

    Article  Google Scholar 

  • Wallinga J, Duller GAT, Murray AS, Törnquist TE (2001) Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits. Earth Planet Sci Lett 193:617–630

    Article  Google Scholar 

  • Wintle AG (1973) Anomalous fading of thermoluminescence in mineral samples. Nature 245:143–144

    Article  Google Scholar 

  • Wintle AG (1997) Luminescence dating: laboratory procedures and protocols. Rad Meas 27:769–817

    Article  Google Scholar 

  • Wintle AG, Murray AS (2000) Quartz OSL: effects of thermal treatment and their relevance to laboratory dating procedures. Rad Meas 32:387–400

    Article  Google Scholar 

  • Zander AM (2000) Vergleich verschiedener Lumineszenzmethoden zur Datierung von Löss. Kölner Forum für Geol Paläont 6(2000):1–92

    Google Scholar 

  • Ziegler PA (1990) Geological Atlas of western and central Europe, 2nd edn. Shell Internationale Petroleum Mij B V, Geological Society, London

  • Zöller L, Löscher M (1999) The last glacial-interglacial cycle in the loess section at Nussloch and underlying upper Tertiary loams. In: Weidenfeller M, Zöller L (eds) Loess in the Middle and Upper Rhine area, vol 99. Field Guide Loessfest, Bonn, pp 37–50

Download references

Acknowledgments

This study was funded by the Deutsche Forschungsgemeinschaft (DFG) (HI 643/2-3), which is appreciated. Sabine Mogwitz, Petra Posimowski and Sonja Riemenschneider are thanked for their excellent technical support and, last but not least, Juliane Herrmann for the art-work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Frechen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frechen, M., Ellwanger, D., Hinderer, M. et al. Late Pleistocene fluvial dynamics in the Hochrhein Valley and in the Upper Rhine Graben: chronological frame. Int J Earth Sci (Geol Rundsch) 99, 1955–1974 (2010). https://doi.org/10.1007/s00531-009-0482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0482-9

Keywords

Navigation