Skip to main content
Log in

Zircon Hf isotope perspective on the origin of granitic rocks from eastern Bavaria, SW Bohemian Massif

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The petrogenetic potential of in situ laser ablation Hf isotope data from melt precipitated zircons was explored through the analyses of about 700 individual crystals derived from about 20 different granitic intrusions covering the Variscan basement segment of eastern Bavaria, SE Germany. In combination with geochemical features, four major suites of granitic rocks can be distinguished: (1) NE Bavarian redwitzites (52–57 wt% SiO2, intrusion ages around 323 Ma) have chondritic εHf(t) values (+0.8 to –0.4). The redwitzites are hybrid rocks and the Hf data are permissive of mixing of a mantle progenitor and crustal melts. (2) Various intermediate rock types (dioritic dyke, granodiorite, palite, 59–63 wt% SiO2, 334–320 Ma) from the Bavarian Forest yield negative εHf(t) values between –3.4 and –5.1. These values which apparently contradict a mantle contribution fingerprint an enriched (metasomatized) mantle component that was mixed with crustal material. (3) Voluminous, major crust forming granites sensu stricto (67–75 wt% SiO2, 328–298 Ma) are characterized by a range in εHf(t) values from –0.5 to –5.6. Different crustal sources and/or modification of crustal melts by various input of juvenile material can explain this variation. (4) Post-plutonic (c. 299 Ma) porphyritic dykes of dacitic composition (64–67 wt% SiO2) from the southern Bavarian Forest have chondritic εHf(t) values (+0.6 to –1.1) and display large intergrain Hf isotope variation. The dykes form a separate petrogenetic group and the Hf data suggest that the zircons crystallized when a pristine mantle-derived parental melt was modified by infiltration of crustal material. The zircon Hf data form a largely coherent positive array with the whole-rock Nd data and both systems yield similar two-stage depleted mantle model ages (1.1–1.7 Ga).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen T, Griffin WL (2004) Lu–Hf and U–Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland intrusive complex, SW Norway: implications for the composition and evolution of Precambrian lower crust in the Baltic shield. Lithos 73:271–288. doi:10.1016/j.lithos.2003.12.010

    Article  Google Scholar 

  • Augustsson C, Münker C, Bahlburg H, Fanning CM (2006) Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. J Geol Soc London 163:983–995. doi:10.1144/0016-76492005-149

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly S (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids. J Petrol 47:329–353. doi:10.1093/petrology/egi077

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57. doi:10.1016/j.epsl.2008.06.010

    Article  Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151. doi:10.1016/S0012-821X(01)00379-X

    Article  Google Scholar 

  • Chen F, Siebel W (2004) Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: Pulses of late Variscan magmatic activity. Eur J Mineral 16:777–788. doi:10.1127/0935-1221/2004/0016-0777

    Article  Google Scholar 

  • Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German C, Bayon G, Burton M (2002) Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. J Anal At Spectrom 17:1567–1574. doi:10.1039/b206707b

    Article  Google Scholar 

  • Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci (Prague) 52:9–28. doi:10.3190/jgeosci.005

    Google Scholar 

  • Flowerdew MJ, Millar IL, Vaughan APM, Horstwood MSA, Fanning CM (2006) The source of granitic gneisses and migmatites in the Antarctic peninsular: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib Mineral Petrol 151:751–768. doi:10.1007/s00410-006-0091-6

    Article  Google Scholar 

  • Flowerdew MJ, Millar IL, Curtis ML, Vaughan APM, Horstwood MSA, Whitehouse MJ, Fanning CM (2007) Combined U–Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol Soc Am Bull 119:275–288. doi:10.1130/B25891.1

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London, Spec Publ 179:35–61

  • Frentzel A (1911) Das Passauer Granitmassiv. Geognostisches Jahrb 24:31

    Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany. Earth Planet Sci Lett 249:47–61. doi:10.1016/j.epsl.2006.06.039

    Article  Google Scholar 

  • Goodge JW, Vervoort JD (2006) Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. Earth Planet Sci Lett 243:711–731. doi:10.1016/j.epsl.2006.01.040

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147. doi:10.1016/S0016-7037(99)00343-9

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY (2002) Zircon geochemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269. doi:10.1016/S0024-4937(02)00082-8

    Article  Google Scholar 

  • Hanchar JM, Hoskin PWO (2003) Zircon. Rev Mineral Geochem 53:500. doi:10.2113/0530089

    Article  Google Scholar 

  • Harrison TM, Blichert-Toft J, Müller W, Albarède F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950. doi:10.1126/science.1117926

    Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162. doi:10.1016/j.chemgeo.2005.09.018

    Article  Google Scholar 

  • Holl KP, von Drach V, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb–Sr and Sm–Nd isotope variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194. doi:10.1016/0040-1951(89)90349-1

    Article  Google Scholar 

  • Holub FV, Klečka M, Matĕjka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 444–452

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:27–62

  • Iizuka T, Hirata T (2005) Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircons using the laser-ablation MC-ICPMS technique. Chem Geol 220:121–137. doi:10.1016/j.chemgeo.2005.03.010

    Article  Google Scholar 

  • Janoušek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U–Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71

    Google Scholar 

  • Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163. doi:10.1007/s004100050014

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation of secular evolution of the continental crust. In: Rudnick RL (ed) The crust. Treat Geochem 3:349–410

  • Kemp AIS, Wormald RJ, Whitehouse MJ, Price RC (2005) Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology 33:797–800. doi:10.1130/G21706.1

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson GA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980–983. doi:10.1126/science.1136154

    Article  Google Scholar 

  • Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:327–341

  • Klein P, Kiehm S, Siebel W, Shang CK, Rohrmüller J, Dörr S, Zulauf G (2008) Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos 102:478–507. doi:10.1016/j.lithos.2007.07.025

    Article  Google Scholar 

  • Köhler H, Müller-Sohnius D (1986) Rb–Sr-Altersbestimmungen und Sr-Isotopensystematik an Gesteinen des Regensburger Waldes (Moldanubikum NE Bayern)—Teil 2: Intrusivgesteine. N Jb Miner Abh 155:219–241

    Google Scholar 

  • Kováríkova P, Siebel W, Jelínek E, Stemprok M, Kachlík V, Holub FV, Blecha V (2007) Petrology and geochemistry of redwitzites from Abertamy in the Nejdek-Eibenstock granite massif of the Krusné hory/Erzgebirge granite batholith, Czech Republic: its bearing on batholith genesis. Chem Erde 67:151–174. doi:10.1016/j.chemer.2007.04.002

    Article  Google Scholar 

  • Kroner U, Hahn T, Romer RL, Linnemann U (2007) The Variscan orogeny in the Saxo-Thuringian zone—heterogenous overprint of Cadomian/Paleozoic peri-Gondwana crust. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Pap 423:153–172

  • Li QL, Chen F, Guo JH, Li YH, Yang YH, Siebel W (2007a) Zircon ages and Nd–Hf isotopic composition of the Zhaertai Group (inner Mongolia): evidence for early Proterozoic evolution of the northern North China block. J Asian Earth Sci 30:573–590. doi:10.1016/j.jseaes.2007.01.006

    Article  Google Scholar 

  • Li XH, Chen F, Guo JH, Li QL, Xie LW, Siebel W (2007b) Provenance of the low-grade Penglai Group in the Sulu UHP orogenic belt, eastern China: evidence from detrital zircon age and Nd–Hf composition. Geochem J 41:29–45

    Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138. doi:10.1007/BF00402106

    Article  Google Scholar 

  • Machado N, Simonetti A (2001) U–Pb dating and Hf isotopic composition of zircon by laser ablation MC-ICP-MS. In: Sylvester P (ed) Laser ablation-ICPMS in the earth sciences: principles and applications. St. John’s, Newfoundland. Mineral Ass Can 29:121–146

  • Madel J (1968) Geochemical structures in a multiple intrusion granite massif. N Jb Miner Abh 124:103–127

    Google Scholar 

  • Nebel O, Nebel-Jacobsen Y, Mezger K, Berndt J (2007) Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: a test for zircon model ages. Chem Geol 241:23–37. doi:10.1016/j.chemgeo.2007.02.008

    Article  Google Scholar 

  • Propach G, Bayer B, Chen F, Frank C, Hölzl S, Hofmann B, Köhler H, Siebel W, Troll G (2008) Geochemistry and petrology of late Variscan magmatic dykes of the Bavarian Forest, Germany. Geol Bavarica 110:304–342

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust. Treatise in Geochemistry 3:1–64

  • Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium–Hafnium clock. Science 293:683–687. doi:10.1126/science.1061372

    Article  Google Scholar 

  • Scherer E, Whitehouse MJ, Münker C (2007) Zircon as a monitor of crustal growth. Elements 3:19–24. doi:10.2113/gselements.3.1.19

    Article  Google Scholar 

  • Siebel W (1994) Inferences about magma mixing and thermal events from isotopic variations in redwitzites near the KTB site. KTB-Report 94–3:157–164

    Google Scholar 

  • Siebel W (1995) Anticorrelated Rb–Sr and K–Ar age discordances, Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120:197–211. doi:10.1007/BF00287117

    Article  Google Scholar 

  • Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270. doi:10.1016/0009-2541(95)00083-X

    Article  Google Scholar 

  • Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian Massif revealed: gravity data, composition, age relations, and phase concept. Int J Earth Sci 86:S45–S63 Geol Rundsch

    Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53. Geol Rundsch. doi:10.1007/s00531-003-0348-5

  • Siebel W, Blaha U, Chen F, Rohrmüller J (2005) Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. Int J Earth Sci 94:8–23. Geol Rundsch. doi:10.1007/s00531-004-0445-0

  • Siebel W, Hann HP, Shang CK, Rohrmüller J, Chen F (2006a) Coeval late-Variscan emplacement of granitic rocks: an example from the Regensburger Wald, NE Bavaria. N Jb Miner 183:13–26. doi:10.1127/0077-7757/2006/0058

    Article  Google Scholar 

  • Siebel W, Thiel M, Chen F (2006b) Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). Mineral Petrol 86:45–62. doi:10.1007/s00710-005-0091-7

    Article  Google Scholar 

  • Siebel W, Shang CK, Reitter E, Rohrmüller J, Breiter K (2008) Two distinctive granite suites in the south-western Bohemian Massif and their record of emplacement: constraints from zircon 207Pb/206Pb chronology and geochemistry. J Petrol 49:1853–1872. doi:10.1093/petrology/egn049

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33. doi:10.1016/0012-8252(76)90052-0

    Article  Google Scholar 

  • Tait J, Schätz M, Bachtadse V, Soffel H (2000) Palaeomagnetism and Palaeozoic palaeo-geography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc London, Spec Publ 179:21–34

  • Thirlwall MF, Walder AJ (1995) In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chem Geol 122:241–247. doi:10.1016/0009-2541(95)00003-5

    Article  Google Scholar 

  • Troll G (1968) Gliederung der redwitzitischen Gesteine Bayerns nach Stoff- und Gefügemerkmalen. Teil I: Die Typlokalität von Marktredwitz in Oberfranken. Bayer Akad Wiss Abh 133:1–86

    Google Scholar 

  • Vervoort JD, Patchett PJ (1996) Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta 60:3717–3733. doi:10.1016/0016-7037(96)00201-3

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarède F (1999) Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99. doi:10.1016/S0012-821X(99)00047-3

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Söderlund U, Baker M (2004) Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotopic dilution using MC-ICPMS. Geochem Geophys Geosyst 5:Q11002. doi:10.1029/2004GC000721

    Article  Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22. doi:10.1016/0040-1951(77)90003-8

    Article  Google Scholar 

  • Willmann K (1920) Die Redwitzite, eine neue Gruppe von granitischen Lamprophyren. Z Dt Geol Ges 71:1–33

    Google Scholar 

  • Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135. doi:10.1016/j.chemgeo.2004.04.026

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic composition of the standard zircons and baddeleyites used for U–Pb geochronology. Chem Geol 234:105–126. doi:10.1016/j.chemgeo.2006.05.003

    Article  Google Scholar 

  • Žák J, Holub FV, Verner K (2005) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the central bohemian plutonic complex (Bohemian Massif). Int J Earth Sci (Geol Rundsch) 94:385–400

    Article  Google Scholar 

  • Zeh A, Gerdes A, Klemd R, Barton JM (2007) Archaean to Proterozoic crustal evolution in the central zone of the Limpopo belt (South Africa–Botswana): constraints from combined U–Pb and Lu–Hf isotope analyses of zircon. J Petrol 48:1605–1639

    Article  Google Scholar 

Download references

Acknowledgments

Research on Hf-in zircon analyses was funded by the Robert-Bosch Stiftung. Wang Fang, Katja Hannig, Wolfgang Reiter, Kai Hettmann, Liewen Xie and Yueheng Yang were instrumental for CL and Hf isotopic measurements. Gisela Bartholomä and Indra Gill-Kopp are thanked for zircon preparation and Elmar Reitter for Nd isotopic measurements. We thank Ulrich Teipel and an anonymous reviewer for insightful comments, which markedly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Siebel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebel, W., Chen, F. Zircon Hf isotope perspective on the origin of granitic rocks from eastern Bavaria, SW Bohemian Massif. Int J Earth Sci (Geol Rundsch) 99, 993–1005 (2010). https://doi.org/10.1007/s00531-009-0442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0442-4

Keywords

Navigation