Skip to main content
Log in

An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Petrographic and geochemical studies of peridotites and melagabbros from the Maures massif (SE France) provide new constraints on the Early Palaeozoic evolution of the continental lithosphere in Western Europe. Peridotites occur as lenses along a unit rooted in the main Variscan suture zone. They are dominantly spinel peridotites and minor garnet–spinel peridotites. Spinel peridotites represent both residual mantle and ultramafic cumulates. Mantle-related dunites and harzburgites display high temperature textures, with olivine (Mg#0.90), orthopyroxene (Mg#0.90) and spinel (TiO2 < 0.2%; Cr#0.64–0.83) compositions typical of fore-arc upper mantle. Ultramafic cumulates are dunite adcumulates, harzburgite heteradcumulates and mesocumulates, melagabbro heteradcumulates and amphibole peridotites, with olivine (Mg#0.85–0.89), orthopyroxene (Mg#0.86–0.89) and Cr-spinel (TiO2 = 0.5–3.3%; Cr#0.7–0.98) compositions typical of ultramafic cumulates. Cr-spinel compositions of both spinel peridotite types suggest their genesis in a supra-subduction zone lithosphere. Core to rim zoning in spinel is related to the incomplete influence of regional metamorphism and serpentinisation. The covariation of major and minor elements with Al2O3 for cumulates is consistent with igneous processes involving crystal accumulation. Both mantle and cumulate dunites and harzburgites have U-shaped REE patterns and extremely low trace element contents, similar to peridotites from modern fore-arc peridotites (South Atlantic) and from ophiolites related to supra-subduction zones (Semail, Cyclops, Pindos, Troodos). Melagabbros also have U-shaped REE patterns similar to xenoliths from the Philippine island arc, but also similar to intrusive ultramafic cumulates from the Semail nappe of Oman related to a proto-subduction setting. A wehrlite has a REE pattern similar to that of amphibole peridotites reflecting metasomatism of clinopyroxene-bearing peridotites due to subduction-related fluids. The Maures spinel peridotites and melagabbros are therefore interpreted as the lowermost parts of a crustal sequence and minor residual mantle of lithosphere generated in a supra-subduction zone during Early Palaeozoic time. Garnet–spinel peridotites are chemically close to melagabbros, but have recorded high pressure metamorphism before their retrogression similar to spinel peridotites into amphibolites to greenschists facies metamorphism. They indicate burial to mantle depths of the margin of the supra-subduction lithosphere during the Early Palaeozoic continental subduction. Both peridotite types were exhumed during the Upper Palaeozoic continental collision. Comparable observations from other Variscan-related peridotites, in particular of the Speik complex of the Autroalpine basement, and a common age for the subduction stage allow extension of these regional conclusions to a broad area sharing the Cambrian suture zone, extending from the Ossa-Morena to the Bohemian massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abati J, Dunning GR, Arenas R, Díaz García F, González Cuadra P, Martínez Catalán JR, Andonaegui P (1999) Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex. Earth Planet Sci Lett 165:213–228. doi:10.1016/S0012-821X(98)00268-4

    Google Scholar 

  • Abe N, Arai S, Yurimoto H (1998) Geochemical characteristics of the uppermost mantle beneath the Japan island arcs: implications for upper mantle evolution. Phys Earth Planet Inter 107:233–247. doi:10.1016/S0031-9201(97)00136-2

    Google Scholar 

  • Ahmed AH, Arai S (2002) Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib Mineral Petrol 143:263–278

    Google Scholar 

  • Ahmed AH, Arai S, Attia AK (2001) Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Contrib Mineral Petrol 136:72–84

    Google Scholar 

  • Alexandrov P (2000) Géochronologie U/Pb et 40Ar/39Ar de deux segments de la chaîne varisque: le haut limousin et les Pyrénées orientales. PhD thesis, INPL Nancy, France

  • Allen DE, Seyfried WEJ (2004) Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochim Cosmochim Acta 68:1347–1354. doi:10.1016/j.gca.2003.09.003

    Google Scholar 

  • Andonaegui P, Gonzalez del Tanago J, Arenas R, Abati J, Martinez-Catalan J, Peinado M, Diaz Garcia F (2002) Tectonic setting of the Monte Castelo gabbro (Ordenes complex, north-western Iberian Massif): evidence for an arc-related terrane in the hanging wall of the Variscan suture. In: Martínez Catalán JR, Hatcher RD, Arenas R Jr, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement. Geol Soc Am Spec Pap, Boulder, CO, 364:37–56

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56:173–184. doi:10.1180/minmag.1992.056.383.04

    Google Scholar 

  • Auzende JM, Bideau D, Bonatti E, Cannat M, Honnorez J, Lagabrielle Y, Malavieille J, Mamaloukas-Frangoulis V, Mevel C (1989) Direct observation of a section through slow-spreading oceanic crust. Nature 337:726–729. doi:10.1038/337726a0

    Google Scholar 

  • Ave Lallemant HG, Carter NL (1970) Syntectonic recrystallization of olivine and modes of flow in the Upper Mantle. Geol Soc Am Bull 81:2203–2220. doi:10.1130/0016-7606(1970)81[2203:SROOAM]2.0.CO;2

    Google Scholar 

  • Avice F (1995) Pétrologie et géochimie des associations leptyno-amphibolitiques des Maures (France). Contribution à l’interprétation du contexte géodynamique. MS, University Montpellier, France, p 40

  • Baker J, Holland TJB (1996) Experimental reversals of chlorite compositions in divariant MgO–Al2O3–SiO2–H2O assemblages: implications for order–disorder in chlorites. Am Mineral 81:676–684

    Google Scholar 

  • Bard J-P, Caruba C (1981) Les séries leptyno-amphiboliques à éclogites relictuelles et serpentinites des Maures, marqueurs d’une paléosuture varisque affectant une croûte amincie? C R Acad Sci Paris 292:611–614

    Google Scholar 

  • Bard J-P, Caruba C (1982) Texture et minéralogie d’une éclogite à disthène-saphirine-hyperstène-quartz en inclusion dans les gneiss migmatitites des Cavalières, massif de Ste Maxime (Maures, Var, France). C R Acad Sci Paris 294:103–106

    Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302. doi:10.1093/petrology/42.12.2279

    Google Scholar 

  • Becker H (1996) Geochemistry of garnet peridotite massifs from lower Austria and the composition of deep lithosphere beneath a Palaeozoic convergent plate margin. Chem Geol 134:49–65. doi:10.1016/S0009-2541(96)00089-7

    Google Scholar 

  • Bedini RM, Bodinier J-L, Dautria JM, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet Sci Lett 153:67–83. doi:10.1016/S0012-821X(97)00167-2

    Google Scholar 

  • Bellot J-P (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with other areas of the Variscan belt: a review. In: Carosi R, Dias R, Iacopini D, Rosenbaum G (eds) The southern Variscan belt, Journal of the Virtual Explorer, Electronic Edition, ISSN 1441–8142, 19

  • Bellot J-P, Bronner G (2000) La tectonique tangentielle à vergence SE des Maures Occidentales, témoin de nappes syn-exhumation? C R Acad Sci Paris 331:659–665

    Google Scholar 

  • Bellot J-P, Bronner G, Laverne C (2000) Analyse de la déformation finie et signification des lentilles ultrabasiques des Maures occidentales (Var, France). Implications géodynamiques. C R Acad Sci Paris 331:803–809

    Google Scholar 

  • Bellot J-P, Bronner G, Marchand J, Laverne C, Triboulet C (2002a) Chevauchement et détachement dans les Maures Occidentales (Var, France): géométrie, cinématique et évolution thermobarométrique de la zone de cisaillement polyphasée de Cavalaire. Geol Fr 1:21–37

    Google Scholar 

  • Bellot J-P, Bronner G, Laverne C (2002b) Transcurrent strain partitioning along a suture zone in the Maures massif (France): result of an eastern indenter tectonics in European Variscides? In: Martínez Catalán JR, Hatcher RD, Arenas R Jr, Díaz García F (eds) Variscan–Appalachian dynamics: the building of the late Paleozoic basement. Boudler, CO, Geol Soc Am Spec Pap 364:223–237

  • Bellot J-P, Triboulet C, Laverne C, Bronner G (2003) Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P–T–t–d paths of metabasites in distinct allochtonous units of the Maures massif (SE France). Int J Earth Sci 92:7–26

    Google Scholar 

  • Bernard-Griffiths J (1975) Essai sur la signification des âges au strontium dans une série métamorphique: la Bas Limousin (Massif central français). Unpublished thesis, University Clermond-Ferrand, France, p 243

  • Beurrier M, Ohnenstetter M, Cabanis B, Lescuyer JL, Teygey M, LeMetour J (1989) Géochimie des filons doléritiques et des roches volcaniques ophiolitiques de la nappe de Semail: contrainte sur leur origine géotectonique au Crétacé supérieur. Bull Soc Geol Fr 8(V):205–219

    Google Scholar 

  • Bloomer SH, Hawkins JW (1983) Gabbroic and ultramafic rocks from the Mariana Trench: an island arc ophiolite. In: Hayes DE (ed) The tectonic and geologic evolution of Southeast Asian seas and islands (Pt.2). Am Geophys Union, Geophys Monogr Ser 27:294–317

  • Bodinier J-L (1983) Etude géochimique du massif basique et ultrabasique de Najac (Aveyron). Conséquences géotectoniques. Bull Soc Geol Fr 7:185–193

    Google Scholar 

  • Bodinier J-L, Godard M (2003) Orogenic, ophiolitic and abyssal peridotites. In: Carlson RW, Holland HD, Turekian KK (eds) The mantle and core. Volume 2 of Treatise on geochemistry. Elsevier–Pergamon, Oxford, pp 103–170

    Google Scholar 

  • Bodinier J-L, Godard M (2007) Orogenic, ophiolitic and abyssal peridotites, chap 4. In: Turekian KK, Holland HD (eds) Treatise on geochemistry update. Elsevier, Oxford, 1 2.04, 1–73

  • Bodinier J-L, Giraud A, Dupuy C, Leyreloup A, Dostal J (1986) Caractérisation géochimique des métabasites associées à la suture méridionale hercynienne: Massif central français et Chamrousse (Alpes). Bull Soc Geol Fr 8:115–123

    Google Scholar 

  • Bodinier J-L, Guiraud M, Fabriès J, Dostal J, Dupuy C (1987) Petrogenesis of layered pyroxenites from the Lherz, Feychinède and Prades ultramafic bodies (Ariège, French Pyrenees). Geochim Cosmochim Acta 51:279–290. doi:10.1016/0016-7037(87)90240-7

    Google Scholar 

  • Bodinier J-L, Burg J-P, Leyreloup A, Vidal H (1988) Reliques d’un bassin d’arrière-arc subducté, puis obducté dans la région de Marvejols (Massif central). Bull Soc Geol Fr 8:21–33

    Google Scholar 

  • Bonatti E, Michael PJ (1989) Mantle peridotites from continental rifts to oceanic basins to subduction zones. Earth Planet Sci Lett 91:297–311. doi:10.1016/0012-821X(89)90005-8

    Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (St. John) Red Sea: petrology and geochemistry. J Geophys Res 91:599–631. doi:10.1029/JB091iB01p00599

    Google Scholar 

  • Bouloton J, Goncalves P, Pin C (1998) Le pointement de péridotite à grenat-spinelle de La Croix-Valmer (Maures centrales): un cumulat d’affinité océanique impliqué dans la subduction éohercynienne? C R Acad Sci Paris 326:473–477

    Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Briand B, Piboule M, Santallier D, Bouchardon J-L (1991) Geochemistry and tectonic implication of two Ordovician bimodal igneous complexes, southern French Massif Central. J Geol Soc Lond 148:959–971. doi:10.1144/gsjgs.148.6.0959

    Google Scholar 

  • Briand B, Bouchardon J-L, Capiez P, Piboule M (2002) Felsic (A-type)-Basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures massif (southeastern France). Geol Mag 139:291–311. doi:10.1017/S0016756802006477

    Google Scholar 

  • Browning P (1982) The petrology, geochemistry and structure of the plutonic rocks of the Oman ophiolite. Unpublished PhD thesis, Open University, p 404

  • Büno GG, Meisel T (1993) Geochemistry of polymetamorphic ultramafics (major, trace, noble and rare earth elements). An example from the Helvetic basement, Central Alps, Switzerland. Mineral Petrol 49:189–212. doi:10.1007/BF01164594

    Google Scholar 

  • Burg J-P, Matte P (1978) A cross-section through the French Massif Central and the scope of its Variscan geodynamic evolution. Z Dtsch Geol Ges 109:429–460

    Google Scholar 

  • Burley E (1997) Les tufs volcaniques zéolitisés des Rhodopes (Bulgarie). MS, Univ. Aix-Marseille III, p 37

  • Burns LE (1985) The Border Range ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22:1020–1038

    Google Scholar 

  • Buscail F (2000) Contribution à la compréhension du problème géologique et géodynamique du massif des Maures: le métamorphisme régional modélisé dans le système KFMASH: analyse paragénétique, chémiographie, thermobarométrie, géochronologie Ar/Ar. PhD thesis, Univ Montpellier, France

  • Carswell DA, Harley MA (1990) Mineral barometry and thermometry. In: Carswell DA (ed) Eclogite facies rocks. Blackie, Glasgow, pp 83–109

    Google Scholar 

  • Carswell DA, Harley MA, Al-Samman A (1983) The petrogenesis of contrasting Fe–Ti and Mg–Cr garnet peridotite types in the high grade complex of Western Norway. Bull Mineral (Paris) 106:727–750

    Google Scholar 

  • Caruba C (1983) Nouvelles données pétrographiques, minéralogiques et géochimiques sur le massif métamorphique hercynien des Maures (Var, France): comparaison avec les segments varisques voisins et essais d’interprétation géotectonique. Doctorate thesis, Univ Nice, France, p 359

  • Chemenda AI, Matte P, Sokolov V (1997) A model of Paleozoic obduction and exhumation of high-pressure/low-temperature rocks in the Southern Urals. Tectonophysics 276:217–227. doi:10.1016/S0040-1951(97)00057-7

    Google Scholar 

  • Churikova T, Dorendorf F, Wörner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42:1567–1593. doi:10.1093/petrology/42.8.1567

    Google Scholar 

  • Coleman RG (1977) Ophiolites: ancient oceanic lithosphere. Springer, Berlin

    Google Scholar 

  • Couturier M (1996) Rétromorphoses hydratées des péridotites: exemple du massif de la Bessenoits (Massif Central français). PhD thesis, Univ Toulouse III, France, p 312

  • Couturier M, Monchoux P, Santallier D (1994) Les méta-péridotites de La Bessenoits (Massif central). Nature et signification géodynamique. Geol Fr 3:53–70

    Google Scholar 

  • Devouard B (1995) Structure et croissance cristalline du chrysotile et des serpentines polygonales. PhD thesis, Univ Aix-Marseille II, France, p 181

  • Dhuime B, Bosch D, Bodinier J-L, Garrido CJ, Bruguier O, Hussain SS, Dawood H (2007) Multistage evolution of the Jijal ultramafic–mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet Sci Lett 261:179–200. doi:10.1016/j.epsl.2007.06.026

    Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76. doi:10.1007/BF00373711

    Google Scholar 

  • Dijkstra AH, Drury MR, Vissers RLM (2001) Structure and petrology of plagioclase-peridotites in the West Othris Mountains (Greece): melt impregnation in mantle lithosphere. J Petrol 42:5–24. doi:10.1093/petrology/42.1.5

    Google Scholar 

  • Dijkstra AH, Barth MG, Drury MR, Mason PRD, Vissers RLM (2003) Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: a structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochem Geophys Geosyst 4:2001GC000278

  • Dobmeier C, Pfeifer HR, Von Raumer JF (1999) The newly defined “Greenstone Unit” of the Aiguilles Rouges massif (western Alps): remnant of an Early Palaeozoic oceanic island-arc? Schweiz Mineral Petrogr Mitt 79:263–276

    Google Scholar 

  • Dubuisson G, Mercier J-C, Girardeau J, Frizon J-Y (1989) Evidence for a lost ocean in Variscan terranes of the western Massif Central (France). Nature 337:729–732. doi:10.1038/337729a0

    Google Scholar 

  • Duthou JL, Cantagrel JM, Didier J, Vialette Y (1984) Paleozoic granitoids from the French Massif Central: age and origin studied by 87Rb–87Sr system. Phys Earth Planet Inter 35:131–144. doi:10.1016/0031-9201(84)90039-6

    Google Scholar 

  • England PC, Thompson AB (1984) Pressure–temperature–time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928

    Google Scholar 

  • Ernewein M, Pflumio C, Whitechurch H (1988) The death of an accretion zone as evidenced by the magmatic history of the Sumail ophiolite. Tectonophysics 151:247–274. doi:10.1016/0040-1951(88)90248-X

    Google Scholar 

  • Evans BE, Frost BR (1975) Chrome-spinel in progressive metamorphism. A preliminary analysis. Geochim Cosmochim Acta 39:959–972. doi:10.1016/0016-7037(75)90041-1

    Google Scholar 

  • Fabries J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336. doi:10.1007/BF00372258

    Google Scholar 

  • Faryad SW, Melcher F, Hoinkes G, Puhl J, Meisel T, Frank W (2002) Relics of eclogites facies metamorphism in the Austroalpine basement, Hochgröben (Speik complex), Austria. Mineral Petrol 74:49–73. doi:10.1007/s710-002-8215-9

    Google Scholar 

  • Faure M, Bé Mézème E, Duguet M, Cartier C, Talbot J (2005) Paleozoic tectonic evolution of medio-europa from the example of the French Massif Central and Massif Armoricain. In: Carosi R, Dias R, Iacopini D, Rosenbaum G (eds) The southern Variscan belt, Journal of the Virtual Explorer, Electronic Edition, ISSN 1441–8142, 19

  • Fernandez-Suarez J, Gutierrez-Alonso G, Jenner GA, Tubbrett MN (1999) Crustal sources in Lower Palaeozoic rocks from NW Iberia: insights from laser ablation U–Pb ages of detrital zircons. J Geol Soc Lond 156:1065–1068. doi:10.1144/gsjgs.156.6.1065

    Google Scholar 

  • Fernandez-Suarez J, Corfu F, Arenas R, Marcos A, Martinez-Catalan JR, Garcia F, Abati J, Fernandez FJ (2002) U–Pb evidence for a polyorogenic evolution of the HP–HT units of the Iberian Massif. Contrib Mineral Petrol 143:236–253. doi:10.1007/s00410-001-0337-2

    Google Scholar 

  • Forestier FH (1961) Métamorphisme hercynien et anté-hercynien dans le bassin du Haut-Allier. Mem Soc Geol Fr 271:294

    Google Scholar 

  • Franceschelli M, Puxeddu M, Cruciani G, Utzeri D (2007) Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: a review. Int J Earth Sci 96:795–815. doi:10.1007/s00531-006-0145-z

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. Geol Soc Lond Spec Publ 179:35–61

    Google Scholar 

  • Friend CRL, Bennett VC, Nutman AP (2002) Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contrib Mineral Petrol 143:71–92

    Google Scholar 

  • Gardien V, Teygey M, Lardeaux J-M, Misseri M, Dufour E (1990) Crust–mantle relationships in the French Variscan chain: the examples of the southern Monts du Lyonnais unit (eastern French Massif Central). J Metamorph Geol 8:447–492. doi:10.1111/j.1525-1314.1990.tb00481.x

    Google Scholar 

  • Garrido CJ, Bodinier J-L, Alard O (2000) Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite. Earth Planet Sci Lett 181:341–358. doi:10.1016/S0012-821X(00)00201-6

    Google Scholar 

  • Gasparik T (1987) Orthopyroxene thermobarometry in simple and complex systems. Contrib Mineral Petrol 96:357–370. doi:10.1007/BF00371254

    Google Scholar 

  • Girardeau J, Gil Ibarguchi JI (1991) Pyroxenite-rich peridotites of the Cabo Ortegal complex (Northwestern Spain): evidence for large-scale upper-mantle heterogeneity. J Petrol Spec Lherzolites Issue: 135–154

  • Girardeau J, Mével C (1982) Amphibolitized sheared gabbros from ophiolites as indicators of the evolution of the oceanic crust: Bay of Island, Newfoundland. Earth Planet Sci Lett 61:151–165. doi:10.1016/0012-821X(82)90048-6

    Google Scholar 

  • Giraud A, Marchand J, Dupuy C, Dostal J (1984) Geochemistry of leptyno-amphibolite complex from Haut-Allier (French Massif Central). Lithos 17:203–214. doi:10.1016/0024-4937(84)90020-3

    Google Scholar 

  • Grau G, Bernard-Griffiths J, Lecuyer C, Henin O, Mace J, Cannat M (1995) Extreme Nd isotopic variation in the Trinity ophiolite complex and the role of melt-rock reactions in the oceanic lithosphere. Contrib Mineral Petrol 121:337–350. doi:10.1007/s004100050100

    Google Scholar 

  • Gravestock PJ, Hawkesworth CJ, van Calsteren PWC (1995) An island-arc setting for the Cabo-Ortegal ultramafic complex, NW Spain. In: Barsczus HG, Gervilla F (eds) Second International Workshop on Orogenic Lherzolites and mantle-processes, Granada, Portugal, Abstract, p 23

  • Green DH, Ringwood AE (1967) An experimental investigation of gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta 31:767

    Google Scholar 

  • Gueirard S (1960) Description pétrographique et zonéographique des schistes cristallins des Maures (Var). Thesis, Univ Marseille III, France

  • Harley S (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373. doi:10.1007/BF01187140

    Google Scholar 

  • Harley S, Green DH (1982) Garnet–orthopyroxene barometry for granulites and peridotites. Nature 300:697–701. doi:10.1038/300697a0

    Google Scholar 

  • Helmy HM, El Mahallawi MM (2003) Gabbro Akarem mafic–ultramafic complex, Eastern Desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes. Mineral Petrol 77:85–108. doi:10.1007/s00710-001-0185-9

    Google Scholar 

  • Hermann J, Montener O, Gonther D (2001) Differentiation of mafic magma in a continental crust-to-mantle transition zone. J Petrol 42:189–206. doi:10.1093/petrology/42.1.189

    Google Scholar 

  • Himmelberg GR, Loney RA (1995) Characteristics and petrogenesis of Alaskan-type ultramafic–mafic intrusions, southeastern Alaska. US Geol Surv Prof Pap no. 1564

  • Ibarguchi JIG, Abalos B, Azcarraga J, Puelles P (1999) Deformation, high-pressure metamorphism and exhumation of ultramafic rocks in a deep subduction/collision setting (Cabo Ortegal, NW Spain). J Metamorph Geol 17:747–764. doi:10.1046/j.1525-1314.1999.00227.x

    Google Scholar 

  • Innocent C (1993) Contribution des isotopes à longue période à la connaissance de l’altération de la croûte continentale. PhD thesis, Univ Aix-Marseille III, France, p 250

  • Innocent C, Michard A, Guerrod C, Hamelin B (2003) Datation U–Pb sur zircons à 548 Ma de leptynites des Maures centrales. Signification géodynamique des complexes leptyno-amphibolitiques de l’Europe varisque. Bull Soc Geol Fr 174:585–594. doi:10.2113/174.6.585

    Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostand Newsl 16:311–315. doi:10.1111/j.1751-908X.1992.tb00494.x

    Google Scholar 

  • Ionov DA, Bodinier J-L, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. J Petrol 43:2219–2259. doi:10.1093/petrology/43.12.2219

    Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator. Part II. Petrological applications. Can J Earth Sci 4:71–103

    Google Scholar 

  • Irvine TN (1977) Origin of chromitite layers in the Muskox intrusion and their stratiform intrusions: a new interpretation. Geology 5:273–277. doi:10.1130/0091-7613(1977)5<273:OOCLIT>2.0.CO;2

    Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Bonin–Mariana forearc, leg 125. Proc Ocean Drill Program Sci Results 125:445–485

    Google Scholar 

  • Jamtveit B (1987) Magmatic and metamorphic controls on chemical variations within the Eiksunddal eclogite complex, Sunmore, western Norway. Lithos 20:369–389. doi:10.1016/0024-4937(87)90017-X

    Google Scholar 

  • Jan MQ, Windley BF (1990) Cr-spinel-silicate chemistry in ultramafic rocks of the Jijal complex, northwest Pakistan. J Petrol 31:667–715

    Google Scholar 

  • Jenkins DM (1983) Stability and composition relations of calcic amphiboles in ultramafic rocks. Contrib Mineral Petrol 83:375–384. doi:10.1007/BF00371206

    Google Scholar 

  • Jenkins DM, Chernosky JV (1986) Phase equilibria and crystallochemical properties of Mg-chlorite. Am Mineral 71:924–936

    Google Scholar 

  • Kalt A, Altherr R (1996) Metamorphic evolution of garnet–spinel peridotites from the Variscan Schwarzwald (Germany). Geol Rundsch 85:211–224. doi:10.1007/BF02422229

    Google Scholar 

  • Kalt A, Altherr R, Hanel M (1995) Contrasting P–T conditions recorded in ultramafic high-pressure rocks from the Variscan Schwarzwald (F.R.G). Contrib Mineral Petrol 121:45–60. doi:10.1007/s004100050089

    Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671. doi:10.1093/petrology/42.4.655

    Google Scholar 

  • Kay RW, Senechal RG (1976) The rare earth chemistry of the Troodos ophiolite complex. J Geophys Res 81:964–970. doi:10.1029/JB081i005p00964

    Google Scholar 

  • Kelemen PB, Aharonov E (1998) Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges, Geophysical Monograph 106. AGU, Washington DC, pp 267–289

  • Kornprobst J, Tabit A (1988) Plagioclase-bearing ultramafic tectonites from the Galicia margin (leg 103, site 637): comparison of their origin and evolution with low-pressure ultramafic bodies in western Europe. Proc Ocean Drill Program Sci Results 103:253–263

    Google Scholar 

  • Lafon JM (1986) Géochronologie U–Pb appliquée à deux segments du Massif central français: le Rouergue oriental et le Limousin central. Unpublished PhD thesis, Univ Montpellier, France, p 152

  • Lardeaux J-M, Ledru P, Daniel I, Duchène S (2001) The Variscan French Massif central—a new addition to the ultra-high pressure metamorphic ‘club’: exhumation processes and geodynamic consequences. Tectonophysics 332:143–168. doi:10.1016/S0040-1951(00)00253-5

    Google Scholar 

  • Lasnier B (1970) Le métamorphisme régional des gabbros d’après la littérature internationale. Etude préliminaire des gabbros coronitiques du massif Armoricain et du massif des Maures (France). Thesis, Univ Nantes, France, p 297

  • Laverne C, Bronner G, Bellot J-P (1997) Les ultrabasites du massif hercynien des Maures (Var), témoins d’une zone avant-arc? Evidences pétrographiques et minéralogiques. C R Acad Sci Paris 325:765–771

    Google Scholar 

  • Leake BE, Wooley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Maresh WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Min Mag (Lond) 82:1019–1027

    Google Scholar 

  • Leblanc M (1985) Les gisements de spinelles chromifères. Bull Mineral (Paris) 108:587–602

    Google Scholar 

  • Ledru P, Autran A, Santallier D (1994) Lithostratigraphy of Variscan terranes in the French Massif Central: a basis for paleogeographical reconstitution. In: Keppie JD (ed) Pre-mesozoic geology in France and related areas Part III, the Massif Central, Springer, Berlin, pp 276–288

    Google Scholar 

  • Leyreloup A, Buscail F, Motard C, Ciancaleoni L, Dumoulin C, Lavigne J-F, Monié P, Brunel M (1996) Découverte de paragenèses de type schistes blancs dans les Maures occidentales. Chemin PTt. Implications géodynamiques. RST meeting, Orléans, p 55

  • Liou JG, Kuniyoshi S, Ito K (1974) Experimental studies of the phase relations between greenschist and amphibolite in a basaltic system. Am J Sci 274:613–632

    Google Scholar 

  • Lippard SJ, Shelton AW, Gass IG (1986) The ophiolite of northern Oman. Geol Soc Lond, Mem 11, Spec Publ p 178

  • Lucks H, Schulz B, Audren C, Triboulet C (2002) Variscan pressure-temperature evolution of garnet pyroxenite and amphibolites in the Baie d’Audierne metamorphic series, Brittany (France) In: Martínez Catalán JR, Hatcher RD, Arenas R Jr, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement. Boudler, CO, Geol Soc Am Spec Pap 364:89–103

  • Maillet N, Piboule M, Santallier D, Cabanis B (1984) Diversité d’origine des ultrabasites dans la série métamorphique du Limousin. Doc BRGM 81:1–24

    Google Scholar 

  • Martinez-Catalan JR, Arenas R, Diaz Garcia F, Abati J (1999) Allochthonous units in the Variscan belt of NW Iberia. In: Sinha AK (ed) Terranes and accretion history, basement tectonics 13. Kluwer, Dordrecht, pp 65–84

    Google Scholar 

  • Matte P (1998) Continental subduction and exhumation of HP rocks in Paleozoic orogenic belts: Uralides and Variscides. GFF 120:209–222

    Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480–290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:117–121. doi:10.1046/j.1365-3121.2001.00327.x

    Google Scholar 

  • Maury RC, Defant MJ, Joron J-L (1992) Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature 360:661–663. doi:10.1038/360661a0

    Google Scholar 

  • Melcher F, Meisel T, Puhl J, Koller F (2002) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65:69–112. doi:10.1016/S0024-4937(02)00161-5

    Google Scholar 

  • Ménot RP, Peucat JJ, Scarenzi D, Piboule M (1988) 496-Ma age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): evidence of a Lower Paleozoic oceanization. Earth Planet Sci Lett 88:82–92. doi:10.1016/0012-821X(88)90048-9

    Google Scholar 

  • Menzies MA (1990) Archaean, Proterozoic and Phanerozoic lithosphere. In: Menzies MA (ed) Continental mantle, Oxford University Press, pp 67–86

  • Mercier L, Lardeaux J-M, Davy P (1991) On the tectonic significance of retrograde P–T–t paths in eclogites of the French Massif Central. Tectonics 10:131–140. doi:10.1029/90TC02094

    Google Scholar 

  • Meurer WP, Claeson DT (2002) Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst. J Petrol 43:607–629. doi:10.1093/petrology/43.4.607

    Google Scholar 

  • Monnier C, Girardeau J, Pubellier M, Polvé M, Permana H, Bellon H (1999) Petrology and geochemistry of the Cyclops ophiolites (Irian Jaya–east Indonesia): consequences for the evolution of the north Australian margin during Cenozoic. Mineral Petrol 67:111–142. doi:10.1007/BF01161518

    Google Scholar 

  • Montigny R, Bougault H, Bottinga Y, Allègre CJ (1973) Trace element geochemistry and the genesis of the Pindus ophiolite suite. Geochim Cosmochim Acta 37:2135–2147. doi:10.1016/0016-7037(73)90012-4

    Google Scholar 

  • Morillon A-C, Féraud G, Sosson M, Ruffet G, Crévola G, Lerouge G (2000) Diachronous cooling on both sides of a major strike–slip fault in the Variscan Maures massif (SE France), as deduced from a detailed 40Ar/39Ar study. Tectonophysics 321:103–126. doi:10.1016/S0040-1951(00)00076-7

    Google Scholar 

  • Moussavou M (1998) Contribution à l’histoire thermo-tectonique varisque du massif des Maures par la typologie des zircons et la géochronologie U/Pb sur minéraux accessoires. PhD thesis, Univ Montpellier II, France, p 187

  • Müller B, Klötzli U, Flisch M (1995) U–Pb and Pb–Pb dating of the older orthogneiss suite in the Silvretta nappe, eastern Alps: Cadomian magmatism in the upper Austro-Alpine realm. Geol Rundsch 84:457–465. doi:10.1007/s005310050017

    Google Scholar 

  • Murray CG (1972) Zoned ultramafic complexes of the Alaskan type: feeder pipes of andesite volcanoes. In: Shagam RE and others (eds) Studies in Earth and space sciences (Hess volume). Geol Soc Am Mem 132:313–335

  • Murton BJ, Peate DW, Arculus RJ, Pearce JA, van der Laan S (1992) Trace-element geochemistry of volcanic rocks from Site 786: the Izu-Bonin forearc. Proc Ocean Drill Program, Sci Results 125:211–235

    Google Scholar 

  • Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170. doi:10.1016/0012-821X(85)90043-3

    Google Scholar 

  • Nicolas A, Boudier F, Meshi A (1999) Slow spreading accretion and mantle denudation in the Mirdita ophiolite (Albania). J Geophys Res 104:15155–15167. doi:10.1029/1999JB900126

    Google Scholar 

  • O’Hanley DS, Chernosky JV, Wicks FJ (1989) The stability of lizardite and chrysotile. Can Mineral 27:483–493

    Google Scholar 

  • O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194. doi:10.1007/BF00636522

    Google Scholar 

  • Orberger B, Lorand JP, Girardeau J, Mercier J-CC, Pitragool S (1995) Petrogenesis of ultramafic rocks and associated chromitites in the Nan Uttaradit ophiolite, Northern Thailand. Lithos 35:153–182. doi:10.1016/0024-4937(94)00041-Y

    Google Scholar 

  • Ordóñez Casado B, Gebauer D, Schäfer HJ, Gil Ibarguchi JI, Peucat JJ (2001) A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 332:359–385. doi:10.1016/S0040-1951(00)00210-9

    Google Scholar 

  • Ozawa K (1988) Ultramafic tectonite of the Miyamori ophiolitic complex in the Kitakami mountains, northeast Japan: hydrous upper mantle in an island arc. Contrib Mineral Petrol 99:159–175. doi:10.1007/BF00371458

    Google Scholar 

  • Palandri JL, Reed MH (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68:1115–1133. doi:10.1016/j.gca.2003.08.006

    Google Scholar 

  • Paquette J-L, Monchoux P, Couturier M (1995) Geochemical and isotopic study of a norite–eclogite transition in the European Variscan belt: Implications for U–Pb zircon systematics in metabasic rocks. Geochim Cosmochim Acta 59:1611–1622. doi:10.1016/0016-7037(95)00067-A

    Google Scholar 

  • Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, leg 125. Proc Ocean Drill Program, Sci Results 125:487–506

    Google Scholar 

  • Parlak O, Delaloye M, Bingol E (1997) Phase and cryptic variation through the ultramafic–mafic cumulates in the Mersin ophiolite (Southern Turkey). Ofioliti 22:81–92

    Google Scholar 

  • Pearce JA, Alabaster J, Shelton AW, Searle MP (1981) The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philos Trans R Soc Lond 300:299–317. doi:10.1098/rsta.1981.0066

    Google Scholar 

  • Pearce JA, Lippard S, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolite. In: Kokelar BP, Howells MF (eds) Marginal basin geology. Geol Soc Lond Spec Publ 16:77–94

  • Pearce JA, Barker PF, Edwards PF, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53. doi:10.1007/s004100050572

    Google Scholar 

  • Pereira MF, Chichorro M, Linnemann U, Eguiluz L, Brandão Silva J (2006) Inherited arc signature in Ediacaran and Early Cambrian basins of the Ossa-Morena Zone (Iberian Massif, Portugal): Paleogeographic link with European and North African Cadomian correlatives. Precambrian Res 144:297–315. doi:10.1016/j.precamres.2005.11.011

    Google Scholar 

  • Perfit MR, Heezen BC, Rawson M, Donnelly T (1980) Chemistry, origin and tectonic significance of metamorphic rocks from the Puerto Rico trench. Mar Geol 34:125–156. doi:10.1016/0025-3227(80)90069-9

    Google Scholar 

  • Peucat JJ, Bernard-Griffiths J, Gil Ibarguchi JI, Dallmeyer RD, Ménot RP, Cornichet J, Iglesias Ponce De Leone M (1990) Geochimical and geochronological cross section of the deep Variscan crust: the Cabo Ortegal high-pressure nappe (northwestern Spain). Tectonophysics 177:263–292. doi:10.1016/0040-1951(90)90285-G

    Google Scholar 

  • Pin C (1990) Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177:215–227. doi:10.1016/0040-1951(90)90282-D

    Google Scholar 

  • Pin C, Lancelot J (1982) U/Pb dating of an early Paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. Contrib Mineral Petrol 79:1–12. doi:10.1007/BF00376956

    Google Scholar 

  • Pin C, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196. doi:10.1016/0024-4937(93)90016-6

    Google Scholar 

  • Pin C, Peucat JJ (1986) Ages des épisodes de métamorphisme paléozoïques dans le Massif central et le Massif armoricain. Bull Soc Geol Fr 3:461–469

    Google Scholar 

  • Pin C, Vielzeuf D (1988) Les granulites de haute-pression d’Europe moyenne, témoins d’une subduction éo-hercynienne. Implications sur l’origine des groupes leptyno-amphiboliques. Bull Soc Geol Fr 8:13–20

    Google Scholar 

  • Portnyagin MV, Danyushevsky LV, Kamenetsky VS (1997) Coexistence of two distinct mantle sources during formation of ophiolites: a case study of primitive pillows lavas from the lowest part of the volcanic section of the Troodos ophiolite, Cyprus. Contrib Mineral Petrol 128:287–301. doi:10.1007/s004100050309

    Google Scholar 

  • Raleigh CB, Paterson MS (1965) Experimental deformation of serpentinite and its tectonic implications. J Geophys Res 70:3965–3985. doi:10.1029/JZ070i016p03965

    Google Scholar 

  • Ricci CA, Sabatini G (1978) Petrogenetic affinity and geodynamic significance of metabasic rocks from Sardinia, Corsica and Provence. N Jd Min Mh 1:23–38

    Google Scholar 

  • Ruppel C, Hodges KV (1994) Pressure-temperature-time paths from two-dimensional thermal models: prograde, retrograde and inverted metamorphism. Tectonics 13:17–44. doi:10.1029/93TC01824

    Google Scholar 

  • Sack RO, Ghiorso MS (1991) Chromite as a petrogenetic indicator. In: Lindsley DH (ed) Oxide minerals: Petrologic and magnetic significance, Soc Min Am, Review in Mineralogy 25: 323–353

  • Santallier D, Briand B, Ménot R-P, Piboule M (1988) Les complexes leptyno-amphibolitiques (CLA): revue critique et suggestions pour un meilleur emploi de ce terme. Bull Soc Geol Fr 8:3–12

    Google Scholar 

  • Santos JF, Schärer U, Gil Ibarguchi JI, Girardeau J (1996) Origin and evolution of the Palaeozoic Cabo Ortegal ultramafic–mafic complex (NW Spain): U–Pb, Rb–Sr and Pb–Pb isotope data. Chem Geol 129:281–304. doi:10.1016/0009-2541(95)00144-1

    Google Scholar 

  • Santos JF, Schärer U, Gil Ibarguchi JI, Girardeau J (2002) Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb–Sr–Nd isotope data. J Petrol 43:17–43. doi:10.1093/petrology/43.1.17

    Google Scholar 

  • Savelieva GN, Nesbitt RW (1996) A synthesis of the stratigraphic and tectonic setting of Uralian Ophiolites. J Geol Soc Lond 153:525–537. doi:10.1144/gsjgs.153.4.0525

    Google Scholar 

  • Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227. doi:10.1016/S0024-4937(00)00046-3

    Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gòmez-Pugnaire MT, Lòpez-Sànchez Vizcaìno V (2001a) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470. doi:10.1016/S0012-821X(01)00457-5

    Google Scholar 

  • Scambelluri M, Rampone E, Piccardo GB (2001b) Fluid and element cycling in subducted serpentinite: a trace element study of the Erro-Tobbio high-pressure ultramafites (Western Alps, NW Italy). J Petrol 42:55–67. doi:10.1093/petrology/42.1.55

    Google Scholar 

  • Schaltegger U, Nägler TN, Corfu F, Maggetti M, Galetti G, Stosch HG (1997) A Cambrian island arc in the Silvretta nappe: constraints from geochemistry and geochronology. Schweiz Mineral Petrogr Mitt 77:337–350

    Google Scholar 

  • Schaltegger U, Gebauer D, von Quadt A (2002) The mafic–ultramafic rock association of Loderio–Biasca (lower Pennine nappes, Ticino, Switzerland): Cambrian oceanic magmatism and its bearing on early Paleozoic paleogeography. Chem Geol 186:265–279. doi:10.1016/S0009-2541(02)00005-0

    Google Scholar 

  • Schmädicke E (2000) Phase relations in peridotitic and pyroxenitic rocks in the model systems CMASH and NCMASH. J Petrol 41:69–86. doi:10.1093/petrology/41.1.69

    Google Scholar 

  • Seyler M (1982) Caractères pétrographiques et chimiques des métagabbros de la partie centrale du massif des Maures (Var). Bull Soc Geol Fr 24:717–725

    Google Scholar 

  • Seyler M (1986) Petrology and genesis of Hercynian alkaline orthogneiss from Provence, France. J Petrol 27:1229–1251

    Google Scholar 

  • Seyler M, Boucarut M (1979) Existence d’un paléovolcanisme alcalin et transitionnel dans le massif hercynien des Maures (Var). Etude géochimique des amphibolites et résultats préliminaires concernant la chimie des leptynites. Bull Soc Geol Fr 21:11–20

    Google Scholar 

  • Spandler CJ, Arculus RJ, Eggins SM, Mavrogenes JA, Price RC, Reay AJ (2003) Petrogenesis of the Greenhills Complex, Southland, New Zealand: magmatic differentiation and cumulate formation at the roots of a Permian island-arc volcano. Contrib Mineral Petrol 144:703–721

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Amer. Monograph Series, Washington, p 799

  • Staudigel H, Schreyer W (1977) The upper thermal stability of clinoclore, Mg5Al[AlSi3O10](OH)8, at 10–35 kbar P(H2O). Contrib Mineral Petrol 61:187–198. doi:10.1007/BF00374367

    Google Scholar 

  • Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, Oxford

    Google Scholar 

  • Thy P (1987) Petrogenetic implications of mineral crystallization trends of Troodos cumulates, Cyprus. Geol Mag 124:1–11

    Google Scholar 

  • Umino S, Yoshizawa E (1996) Petrology of ultramafic xenoliths from Kishyuku Lava, Fukue-Jima, Southwest Japan. Contrib Mineral Petrol 124:154–166. doi:10.1007/s004100050182

    Google Scholar 

  • Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe–Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°C, 1 to 25 kb range. Am J Sci 301:557–592. doi:10.2475/ajs.301.6.557

    Google Scholar 

  • Von Raumer J, Stampfli GM (2008) The birth of the Rheic Ocean—Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics doi:10.1016/j.tecto.2008.04.012

  • Wang Z, Sun S, Li J, Hou Q, Qin K, Xiao W, Hao J (2003) Paleozoic tectonic evolution of the northern Xinjiang, China: geochemical and geochronological constraints from the ophiolites. Tectonics 22. doi:10.1029/2002TC001396

  • Webb SA, Wood BJ (1986) Spinel–pyroxene–garnet relationships and their dependence on Cr/Al ratio. Contrib Mineral Petrol 92:471–480. doi:10.1007/BF00374429

    Google Scholar 

  • Wick FJ (1984) Deformation histories as recorded by serpentinites II. Deformation during and after serpentinization. Can Mineral 22:205–209

    Google Scholar 

  • Wick FJ, O’Hanley DS (1988) Serpentinite minerals: structures and petrology. In: SW Bailey (ed) Hydrous phyllosilicates, Soc Min Am, Review in Mineralogy 19:91–168

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite–peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122. doi:10.1007/s004100050472

    Google Scholar 

Download references

Acknowledgments

We thank the BRGM (Bureau des Recherches Géologiques et Minières, France) for its financial support, particularly Philippe Rossi for his interest in this work, Delphine Bellot for her essential moral support during the fieldwork, and the staff of the Laboratoire de Pétrologie Magmatique (Université Aix-Marseille 3, France) where the main part of this work was undertaken. The final stage of this work was made at CEREGE (Aix-en-Provence, France). We also thank the Ministère de la Défense and Jean Rebec who kindly “opened” the military Levant Island for us, François Buscail and André Leyreloup for open discussions on the geodynamic setting of the Maures peridotites, Pierre Agrinier, Marie-Odile Trensz, and Claude Triboulet for their help at various stages of this work. Early drafts of the manuscript were improved by Jean-Jacques Cochemé, Jörg Hermann, Marc Leblanc, David Vanko, Ricardo Vanucci, and Olivier Vidal. The detailed and constructive reviews of Angelika Kalt, Jean-Louis Bodinier, and Jürgen Von Raumer help to improve significantly the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Bellot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellot, JP., Laverne, C. & Bronner, G. An early Palaeozoic supra-subduction lithosphere in the Variscides: new evidence from the Maures massif. Int J Earth Sci (Geol Rundsch) 99, 473–504 (2010). https://doi.org/10.1007/s00531-009-0416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0416-6

Keywords

Navigation