Skip to main content
Log in

Reconstruction of the differentiated long-term exhumation history of Fuerteventura, Canary Islands, Spain, through fission-track and (U-Th–Sm)/He data

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Miocene Intrusives and Lower Cretaceous siliciclastic sedimentary rocks from the Basal Complex in western-Fuerteventura were analyzed with low-temperature thermochronometric methods such as fission-track, and (U–Th–Sm)/He dating, in order to reveal the evolution of the island’s exhumation history. The obtained thermochronometric data yields a very slow rate of cooling in the order of 1.5–3°C/Myr from ~50 to 20 Ma for the Early Cretaceous siliciclastic rocks. These sedimentary units have never been heated significantly above 240°C after deposition and still record the submarine onset of the island’s formation in the Eocene. Intrusive bodies associated with the early Miocene magmatic activity of the central volcanic complex of the island show rapid initial cooling rates of 50–70°C/Myr from ~20 to 14 Ma. Contemporaneous with the intrusions the cooling rate of the Cretaceous sedimentary units increased to 25–35°C/Myr and it is inferred that this increase is associated with enhanced uplift and erosion of the Central Volcanic Complex. After ~14 Ma rates slowed down to 3–6°C/Myr. Palaeosols overlying the sedimentary units are themselves covered by Pliocene basalt flows and reveal that the sedimentary rocks reached the surface before ~5 Ma. The thermochronometric data obtained in this study for central Fuerteventura is difficult to reconcile with the cooling history derived from previously obtained fission-track and K–Ar data from the north-western part of the island. This inconsistency is likely to indicate that the exhumation history of Fuerteventura is more complex and regionally subdivided than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ancochea E, Braendle JL, Cubas CR, Hernan F, Huertas MJ (1996) Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the Island of Fuerteventura. J Volcanol Geotherm Res 70:183–204. doi:10.1016/0377-0273(95)00051-8

    Article  Google Scholar 

  • Balogh K, Ahijado A, Casillas R, Fernandez C (1999) Contributions to the chronology of the Basal Complex of Fuerteventura. Canary Islands. J Volcanol Geotherm Res 90:81–101. doi:10.1016/S0377-0273(99)00008-6

    Article  Google Scholar 

  • Biswas S, Coutand I, Grujic D, Hager C, Stockli DF, Grasemann B (2007) Exhumation of the Shillong plateau and its influence on east Himalayan tectonics. Tectonics 26. doi:10.1029/2007TC002125 doi:10.1029/2007TC002125

  • Brix MR, Stöckhert B, Seidel E, Theye T, Thomson SN, Küster M (2002) Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349:309–326

    Article  Google Scholar 

  • Cantagrel JM, Fúster JM, Pin C, Renaud U, Ibarrola E (1993) Miocene age of carbonatites from Fuerteventura, Canary Islands (23 Ma; U/Pb, zircon) and the early magmatism of an oceanic island. C R Seances Acad Sci 316:1147–1153

    Google Scholar 

  • Cendrero A (1970) The volcano plutonic complex of La Gomera. Bull Volcanol c(34):537–561

    Article  Google Scholar 

  • Coello J, Cantagrel JM, Hernan F, Fúster JM, Ibarrola E, Ancochea E, Casquet C, Jamond C, Diaz de Teran JR, Cendrero A (1992) Evolution of the eastern volcanic ridge of the Canary Islands based on new K–Ar data. J Volcanol Geotherm Res 53:251–274. doi:10.1016/0377-0273(92)90085-R

    Article  Google Scholar 

  • de Ignacio C, Muñoz M, Sagredo J, Barbero L (2002) Preliminary apatite-fission track geochronology of the Montaña Blanca-Milocho, alkaline pluton (NW Fuerteventura, Canary Islands, Spain). Geotemas 4:55–59

    Google Scholar 

  • Dunkl I (2002) Trackkey: a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28:3–12. doi:10.1016/S0098-3004(01)00024-3

    Article  Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Feraud G, Giannerini G, Campredon R, Stillman CJ (1985) Geochronology of some Canadian dike swarms; contribution to the volcano-tectonic evolution of the archipelago. J Volcanol Geotherm Res 25:29–52. doi:10.1016/0377-0273(85)90003-4

    Article  Google Scholar 

  • Fernandez C, Casillas R, Garcia NE, Gutierrez M, Camacho MA, Ahijado A (2006) Miocene rifting of Fuerteventura (Canary Islands). Tectonics 25:TC6005. doi:10.1029/2005TC001941

    Article  Google Scholar 

  • Fitzgerald P, Baldwin S, Webb L, Paul OS (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 1–2:91–120. doi:10.1016/j.chemgeo.2005.09.001

    Article  Google Scholar 

  • Fúster JM, Cendrero A, Gastesi P, Ibarrola E, Lopez RJ (1968) Fuerteventura Geoloía y volcanología de las Islas Canarias Instituto ‘Lucas Mallada’, p 239

  • Fúster JM, Munoz M, Sagredo J, Yebenes A, Bravo T, Hernandez PA (1980) Islas Canarias. translated title: Canary Islands. Bol Geol Min 91:351–390

    Google Scholar 

  • Fúster JM, Barrera JL, Munoz M, Sagredo J, Yebenes A (1984) Mapa y Memoria explicativa de la Hoja de Pájara (1106 IV). Instituto Geologico y Minero de España Mapa geológico nacional a escala 1:25000

  • Galbraith R (1981) On statistical models for fission track counts. J Math Geol 13:471–478. doi:10.1007/BF01034498

    Article  Google Scholar 

  • Galbraith R (1990) The radial plot: graphical assessment of spread in ages. In: Durrani SA, Benton EV (eds) Nuclear tracks and radiation measurements. Pergamon, Oxford, pp 207–214

    Google Scholar 

  • Garver J, Bartholomew A (2001) Partial resetting of fission tracks in detrital zircon: dating low temperature events in the Hudson Valley (NY). GSA Abstr 33:83

    Google Scholar 

  • Gastesi P (1973) Is the Betancuria Massif, Fuerteventura, Canary Islands, an Uplifted Piece of Oceanic Crust? Nature 246:102–104

    Google Scholar 

  • Glasmacher UA, Zentilli M, Grist AM (1998) Apatite fission track thermochronology of Paleozoic sandstones and the Hill-intrusion at the northern part of the Linksrheinisches Schiefergebirge, Germany. In: Van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer, Dordrecht, pp 151–172

    Google Scholar 

  • Grist AM, Ravenhurst CE (1992a) Mineral separation techniques used at Dalhousie University. In: Reynolds PH (ed) Low temperature thermochronology; short course handbook. Mineralogical Association of Canada, Toronto, pp 189–201

    Google Scholar 

  • Grist AM, Ravenhurst CE (1992b) Mineral separation techniques used at Dalhousie University. In: Reynolds PH (ed) Low temperature thermochronology; short course handbook. Mineralogical Association of Canada, Toronto, pp 203–209

    Google Scholar 

  • Gutiérrez M, Casillas R, Ferández C, Balogh K, Ahijado A, Castillo C, Colmenero JR, García-Navarro E (2006) The submarine volcanic succession of the basal complex of Fuerteventura, Canary Islands: a model of submarine growth and emergence of tectonic volcanic islands. GSA Bull 118:785–804

    Article  Google Scholar 

  • Hernandez Pacheco A (1973) The significance of the coarse grained gabbroic rocks from the basal complexes of the islands of Fuerteventura, La Palma, and La Gomera. Canary Islands. Est Geol 29:549–557

    Google Scholar 

  • Hourigan JK, Reiners P, Brandon MT (2005) U–Th zonation dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365. doi:10.1016/j.gca.2005.01.024

    Article  Google Scholar 

  • Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol 92(4):413–427. doi:10.1007/BF00374424

  • Hurford AJ (1990) Standardization of fission track dating calibration; recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chem Geol 80:171–178

    Google Scholar 

  • Hurford AJ, Green PF (1982) A users’ guide to fission track dating calibration. EPSL 59:343–354. doi:10.1016/0012-821X(82)90136-4

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Chem Geol 41:285–317

    Article  Google Scholar 

  • Ibarrola E, Fúster JM, Cantagrel JM (1989) Edades K-Ar de las rocas volcánicas submarinas del sector norte del Complejo Basal del Fuerteventura ESF meeting on Canarian Volcanism. European Science Foundation, Lanzarote, pp 124–129

    Google Scholar 

  • Kasuya H, Naeser C (1988) The effect of alpha-damage of fission-track annealing in zircon. Nucl Tracks Radiat Meas 14:477–480. doi:10.1016/1359-0189(88)90008-8

    Article  Google Scholar 

  • Le Bas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary Islands. Geol Mag 123:287–298

    Article  Google Scholar 

  • Muñoz M, Sagredo J, de Ignacio C (2003) Fieldtrip guide Fuerteventura, IV Eurocarbon Workshop Canary Islands. Fuerteventura, Spain

    Google Scholar 

  • Muñoz M, Sagredo J, de Ignacio C, Fernandez-Suárez J, Jeffries TE (2005) New data (U–Pb, K–Ar) on the geochronology of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Lithos 85:140–153. doi:10.1016/j.lithos.2005.03.024

    Article  Google Scholar 

  • Rahn MKW (2001) The metamorphic and exhumation history of the Helvetic Alps, Switzerland, as revealed by apatite and zircon fission tracks unpublished. PhD thesis, University of Fribourg, Switzerland, p 140

  • Reiners P, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev EPSL 34:419–466

    Google Scholar 

  • Riley BCD (2002) Preferential thermal resetting of fission tracks in radiation-damaged detrital zircon grains: case study from the Laramide of Arizona. Geol Soc Am Abstr 34:212

    Google Scholar 

  • Robertson AHF, Bernoulli D (1982) Stratigraphy, facies, and significance of late Mesozoic and early Tertiary sedimentary rocks of Fuerteventura (Canary Islands) and Maio (Cape Verde Islands). In: von Rad U et al (eds) Geology of the Northwest African continental margin. Springer, New York, pp 498–525

    Google Scholar 

  • Robertson AHF, Stillman CJ (1979) Late Mesozoic sedimentary rocks of Fuerteventura, Canary Islands: implications for West African continental margin evolution. J Geol Soc Lond 136:47–60. doi:10.1144/gsjgs.136.1.0047

    Article  Google Scholar 

  • Sagredo J, Munoz M, Galindo C (1996) Caracteristicas petrologicas y edad K-Ar de lassienitas-nefelinicas del morro del recogedero (fuerteventura, islas canarias). Geogaceta 20:505–509

    Google Scholar 

  • Steiner C, Hobson A, Favre P, Stampfli GM, Hernandez J (1998) Mesozoic sequence of Fuerteventura (Canary Islands); witness of Early Jurassic sea-floor spreading in the central Atlantic. GSA Bull 110:1304–1317

    Article  Google Scholar 

  • Stillman CJ (1999) Giant Miocene landslides and the evolution of Fuerteventura, Canary Islands. J Volcanol Geotherm Res 94:89–104. doi:10.1016/S0377-0273(99)00099-2

    Article  Google Scholar 

  • Stockli DF, Dumitru TA, McWilliams MO, Farley KA (2003) Cenozoic tectonic evolution of the White Mountains, California and Nevada. GSA Bull 115:788–816

    Article  Google Scholar 

  • Tagami T, Shimada C (1996) Natural long-term annealing of zircon fission track system around a granitic pluton. J Geophys Res B 101:11353–11364. doi:10.1029/96JB00407

    Article  Google Scholar 

  • Tagami T, Galbraith R, Yamada R, Laslett G (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer, Dordrecht, pp 99–112

    Google Scholar 

  • Vermeesch P, Seward D, Latkoczy C, Wipf M, Guenther D, Baur H (2007) Alpha-emitting mineral inclusions in apatite, their effect on (U–Th)/He ages, and how to reduce it. Geochim Cosmochim Acta 31:1737–1746

    Article  Google Scholar 

  • Wagner M, Altherr R, Van den Haute P (1992) Apatite fission-track analysis of Kenyan basement rocks; constraints on the thermotectonic evolution of the Kenya Dome: a reconnaissance study. Tectonophysics 204:93–104. doi:10.1016/0040-1951(92)90272-8

    Article  Google Scholar 

  • Wipf MA (2006) Evolution of the Western Cordillera and coastal margin of Peru: evidence from low-temperature thermochronology and geomorphology ETH, Zürich, p 152

Download references

Acknowledgments

The authors thank the two reviewers Carlos Fernández and Frank Lisker for very thorough and constructive comments that considerably improved the original manuscript. We also thank Rámon Casillas for his support in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wipf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wipf, M., Glasmacher, U.A., Stockli, D.F. et al. Reconstruction of the differentiated long-term exhumation history of Fuerteventura, Canary Islands, Spain, through fission-track and (U-Th–Sm)/He data. Int J Earth Sci (Geol Rundsch) 99, 675–686 (2010). https://doi.org/10.1007/s00531-008-0415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0415-z

Keywords

Navigation