Skip to main content

Advertisement

Log in

Late Early Permian (266 Ma) N–S compressional deformation of the Turfan basin, NW China: the cause of the change in basin pattern

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Previous studies suggested an important, but yet poorly-understood, tectonic transition in the Altaids (also termed the Central Asian Orogenic Belt, CAOB) in the Permian. This tectonic transition, clearly documented by published stratigraphic data and provenance analyses, suggested a unified Junger–Turfan basin in northwest China in Permian time and it further indicated that extension dominated Early Permian tectonics in the region, whereas flexural, foreland subsidence controlled Late Permian basin evolution. Our new structural observations, microtectonic analyses, and 40Ar/39Ar geochronological data from southwest of the Turfan basin reveal that in the late Early Permian (266 Ma) a NS-directed contractional deformation operated along the southern border of the unified Junger–Turfan basin, which was probably related to the transition in basin evolution. The contraction gave rise to a NW-striking right-lateral transpressional, rather than simple-shear dextral, ductile shear zone along the southwestern border of the Turfan basin, and to an interference fold pattern together with closely-spaced, concentrated cleavage and thrusts in a constrictional strain regime in the basin interior. After the Late Permian the tectonic evolution of the CAOB changed from Paleozoic continental amalgamation to Mesozoic–Cenozoic intracontinental orogenic reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen MB, Vincent SJ (1997) Fault reactivation in the Junger region, northwestern China: the role of basement structures during Mesozoic–Cenozoic compression. J Geol Soc Lond 154:151–155. doi:10.1144/gsjgs.154.1.0151

    Article  Google Scholar 

  • Allen MB, Windley BF, Zhang C, Zhao ZY, Wang GR (1991) Basin evolution within and adjacent to the Tienshan Range, NW China. J Geol Soc Lond 148:369–378. doi:10.1144/gsjgs.148.2.0369

    Article  Google Scholar 

  • Allen MB, Windley BF, Zhang C (1992) Paleozoic collisional tectonics and magmatism of the Chinese Tienshan, Central Asia. Tectonophysics 220:89–115. doi:10.1016/0040-1951(93)90225-9

    Article  Google Scholar 

  • Allen MB, Sengör AMC, Natal’in BA (1995) Junger, Turfan and Alakol basins as Late Permian to? Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia. J Geol Soc Lond 152:327–338. doi:10.1144/gsjgs.152.2.0327

    Article  Google Scholar 

  • Bureau of Geology and Mineral Resource of Xinjiang (1983) Geological map of Xinjiang Uygur Autonomous Region, scale 1:2000000. Geological Publishing House, Beijing

    Google Scholar 

  • Bureau of Geology and Mineral Resource of Xinjiang (1989) Regional Geology of Xinjiang Province. Geological Publishing House, Beijing, pp 1–560

    Google Scholar 

  • Carroll AR, Liang Y, Graham SA, Xiao X, Hendrix MS, Chu J, McKnight CL (1990) Junggar basin, northwest China: trapped late Paleozoic ocean. Tectonophysics 181:1–14. doi:10.1016/0040-1951(90)90004-R

    Article  Google Scholar 

  • Carroll AR, Brassell SC, Graham SA (1992) Upper Permian lacustrine oil shales, southern Junggar basin, northwest China. Am Assoc Petrol Geol Bull 76:1874–1902

    Google Scholar 

  • Che ZC, Liu L, Liu HF (1994) Formation and evolution of the middle Tianshan orogenic belt. Geological Publishing House, Beijing, pp 1–135

    Google Scholar 

  • Chen Z, Wu N, Zhang D, Hu J, Huang H, Shen G, Wu G, Tang H, Hu Y (1985) Geologic map of Xinjiang Uygur Autonomous Region, scale 1:2,000,000. Geologic Publishing House, Beijing 1 sheet

    Google Scholar 

  • Cunningham D, Owen L, Snee L, Li J-L (2003) Structural framework of a major intracontinental orogenic termination zone: the easternmost Tien Shan, China. J Geol Soc Lond 160:575–590. doi:10.1144/0016-764902-122

    Article  Google Scholar 

  • Ghosh SK, Khan D, Sengupta S (1995) Interfering folds in constrictional deformation. J Struct Geol 17:1361–1373. doi:10.1016/0191-8141(95)00027-B

    Article  Google Scholar 

  • Greene TJ, Carroll AR, Wartes M, Graham S, Wooden J (2005) Integrated provenance analysis of complex orogenic terrane: Mesozoic uplift of the Bogda Shan and inception of the Turfan-Hami basin, NW China. J Sediment Res 75:251–267. doi:10.2110/jsr.2005.019

    Article  Google Scholar 

  • Hames WE, Bowring SA (1994) An empirical evaluation of the argon diffusion geometry in muscovite. Earth Planet Sci Lett 124:161–169. doi:10.1016/0012-821X(94)00079-4

    Article  Google Scholar 

  • Harrison TM, Ducan I, McDougall I (1985) Diffusion of 40Ar in biotite: temperature, pressure and compositional effects. Geochim Cosmochim Acta 49:2461–2468. doi:10.1016/0016-7037(85)90246-7

    Article  Google Scholar 

  • He XP, Hu YX, Zhao ZM, Feng YM (2002) Discovery of the early Permian coral fossils in the upper Carboniferous Qiergusitao formation in the North Tianshan, Xinjiang. Geol Bull China 21:648–652 (in Chinese with English abstract)

    Google Scholar 

  • Hendrix MS, Graham SA, Carroll AR, Sobel ER, McKnight CL, Schulein BJ, Wang ZX (1992) Sedimentary record and climatic implications of recurrent deformation in the Tianshan: evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol Soc Am Bull 104:53–79. doi :10.1130/0016-7606(1992)104<0053:SRACIO>2.3.CO;2

    Article  Google Scholar 

  • Jahn BM, Griffin WL, Windley BF (2000a) Continental growth in the Phanerozoic: evidence from Central Asia. Tectonophysics 328:viii–x. doi:10.1016/S0040-1951(00)00174-8

    Article  Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000b) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episode 23(2):82–97

    Google Scholar 

  • Jiang C, Mu Y, Bai K, Zhao X, Zhang H, Hei A (1999) Chronology, petrology, geochemistry and tectonic environment of granitoids in the Southern Tianshan mountains, western China. Acta Petrol Sin 15:298–308 (in Chinese with English abstract)

    Google Scholar 

  • Lanphere MA, Baadsgaard H (1997) The Fish Canyon Tuff: a standard for geochronology. AGU Abstr Program 78:326

    Google Scholar 

  • Laurent-Charvet S, Charvet J, Monie P, Shu L (2003) Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data. Tectonics 22. doi:10.1029/2001TC901047

  • Li JY, Xiao WJ, Wang KZ, Sun GH, Gao LM (2003) Neoproterozoic to Paleozoic tectonostratgraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China. In: Mao JW, Goldfarb R, Seltman R, Wang D, Xiao WJ, Hart C (eds) Tectonic evolution and metallogeny of the Chinese Altay and Tianshan. IAGOD guidebook Series 10: CERCAMS/NHM London, pp 31–74

  • Lin S, Williams PF (1992) The origin of ridge-in-groove slickenside striae and associated steps in an S–C mylonite. J Struct Geol 14:315–321. doi:10.1016/0191-8141(92)90089-F

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot/EX, rev. 3.00, a geochronological toolkit for microsoft excel. Berkeley Geochronol Cent Spec Publ 4:71

    Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York, pp 1–269

    Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Micro-tectonics, 2nd revised and enlarged edition. Springer, Berlin, pp 1–306

    Google Scholar 

  • Sengör AMC, Natal’in A, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307. doi:10.1038/364299a0

    Article  Google Scholar 

  • Wang B, Su LS, Cluzel D, Faure M, Charvet J (2007a) Geochemical constraints on Carboniferous volcanic rocks of the Yili block (Xinjiang, NW China): Implication for the tectonic evolution of Western Tianshan. J Asian Earth Sci 29:148–159. doi:10.1016/j.jseaes.2006.02.008

    Article  Google Scholar 

  • Wang HL, Xu XY, He SP, Chen JL (2007b) Geological map of Tianshan and it adjacent region, Scale 1/1,000,000. Geological Publishing House, Beijing

    Google Scholar 

  • Wang ZX, Wu J, Lu X, Zhang J, Liu C (1990) Polycyclic tectonic evolution and metallogeny of the Tianshan mountain. Science Press, Beijing, pp 1–217

    Google Scholar 

  • Wartes MA, Carroll AR, Greene TJ (2002) Permian sedimentary record of the Turpan-Hami basin and adjacent regions, northwest China: constraints on post-amalgamation tectonic evolution. GSA Bull 114:131–152

    Article  Google Scholar 

  • Windley BF, Allen MB, Zhang C, Zhao Z, Wang G (1990) Paleozoic accretion and Cenozoic redeformation of the Chinese Tienshan range, central Asia. Geology 18:128–131. doi :10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2

    Article  Google Scholar 

  • Windley BF, Alexeiev DV, Xiao WJ, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc Lond 164:31–47. doi:10.1144/0016-76492006-022

    Article  Google Scholar 

  • Xiao X, Tang Y, Feng Y, Zhu B, Li J, Zhao M (1992) Tectonic evolution of northern Xinjiang and its adjacent regions. Geological Publishing House, Beijing

    Google Scholar 

  • Xiao WJ, Zhang L, Qin KZ, Sun S, Li JL (2004a) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. Am J Sci 304:370–395. doi:10.2475/ajs.304.4.370

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Badarch G, Sun S, Qin KZ, Wang ZH (2004b) Paleozoic accretionary and convergent tectonic of the southern Altaids: implications for the growth of Central Asia. J Geol Soc Lond 161:339–342

    Google Scholar 

  • Xu XW, Ma TL, Sun LQ, Cai XP (2003) Characteristics and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the eastern Tianshan Mountains, China. J Struct Geol 25:1901–1915. doi:10.1016/S0191-8141(03)00017-8

    Article  Google Scholar 

  • Yang TN, Wang XP (2006) Geochronology, petrochemistry and tectonic implications of earlier Devonian plutons in Kumish area, Xinjiang. Acta Petrol Miner 25:401–411 (in Chinese with English abstract)

    Google Scholar 

  • Yang XK, Su CQ, Chen H, Zhang HJ, Yan HQ, Li XF, Liu JQ (2006a) Discovery of the Permian volcanic rocks in the Bindaban-Houxia, Tianshan Mountain, and its geological significance. Geol Bull China 25:969–976 (in Chinese with English abstract)

    Google Scholar 

  • Yang TN, Li JY, Sun GH, Wang YB (2006b) Earlier Devonian active continental arc in central Tianshan: evidence of geochemical analyses and zircon SHRIMP dating on mylonitized granitic rocks. Acta Petrol Sin 22:41–48 (in Chinese with English abstract)

    Google Scholar 

  • Yang TN, Wang Y, Li JY, Sun GH (2007) Vertical and horizontal strain partitioning of the Central Tianshan (NW China): evidence from structures and 40Ar/39Ar geochronology. J Struct Geol 29:1605–1621. doi:10.1016/j.jsg.2007.08.002

    Article  Google Scholar 

  • Yang TN, Li JY, Sun GH, Wang YB (2008) Meso-proterozoic continental arc type granite in the Central Tianshan mountains (NW China): zircon SHRIMP U-Pb dating and geochemical analyses. Acta Geol Sin 82:117–125 (English edition)

    Google Scholar 

  • Zheng YD, Wang T, Ma M, Davis GA (2004) Maximum effective moment criterion and the origin of low-angle normal faults. J Struct Geol 26:271–285. doi:10.1016/S0191-8141(03)00079-8

    Article  Google Scholar 

  • Zhou D, Graham SA, Chang EZ, Wang B, Hacker B (2001) Paleozoic tectonic amalgamation of the Chinese Tianshan: evidence from a transect along the Dushanzi-Kuqa Highway. In: Hendrix MS, Gregory AD (eds) Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental deformation. Geol Soc Am Memoir 194: 23–46

  • Zhu YF, Zhang LF, Gu LB, Guo X, Zhou J (2005) Zircon SHRIMP geochronology and trace elements of Carboniferous volcanic rocks from eastern Tianshan. Chin Sci Bull 50:2004–2014 (in Chinese)

    Google Scholar 

  • Zhu YF, Zhou J, Zeng YS (2007) The Tianger (Bindaban) shear zone hosted gold deposit, west Tianshan, NW China: petrographic and geochemical characteristics. Ore Geol Rev 32:337–365. doi:10.1016/j.oregeorev.2006.10.006

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the State Key Research Development Program of China (973. No.2007CB411306 and 2001CB409810). M. B. Allen and Shoufa Lin provided helpful comments on an earlier version of the manuscript. Special thanks are given to Professor. F. B. Windley for his help with the English text and grammar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T.N., Li, J.Y., Wang, Y. et al. Late Early Permian (266 Ma) N–S compressional deformation of the Turfan basin, NW China: the cause of the change in basin pattern. Int J Earth Sci (Geol Rundsch) 98, 1311–1324 (2009). https://doi.org/10.1007/s00531-008-0396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0396-y

Keywords

Navigation