Skip to main content

Advertisement

Log in

Mississippian (Early Carboniferous) stromatolite mounds in a fore-reef slope setting, Laibin, Guangxi, South China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Mississippian (Early Carboniferous) is generally a period of scarce carbonate buildups in South China. This study documents outcrops of stromatolite mounds at Mengcun and Helv villages, in Laibin City, Guangxi Province, South China. The stromatolite mounds contain various stromatolite morphologies including laminar, wavy-laminar, domal or hemispheroidal, bulbous, and flabellate-growth columns. Intramound rocks are brachiopod floatstone and dark thin-bedded laminated micrite limestone. Individual stromatolites at Mengcun village are generally 3–6 cm thick and morphologically represent relatively shallow-water laminar (planar and wavy-undulated stromatolites) and deeper-water domal, bulbous and columnar forms. Where mounds were formed, the stromatolites continued growing upward up to 60 cm thick. Thrombolitic fabrics also occur but are not common. Stromatolite microscopic structure shows the bulk of the lamination to consist of wavy microbialite and discrete thin micritic laminae. These mounds are intercalated in deep-water fore-reef talus breccia, packstone formed as a bioclastic debris flow and thin-bedded limestone containing common chert layers of the Tatang Formation (late Viséan). Further evidence supporting the deep-water setting of the stromatolite mounds are: (1) a laterally thinning horizon of brachiopod floatstone containing deep-water, small, thin-shelled brachiopods, peloidal micritic sediments and low-diversity, mixed fauna (e.g., thin-shelled brachiopods, tube-like worms and algae) that have been interpreted as storm deposits, (2) common fore-reef talus breccias, (3) lack of sedimentary structures indicating current action, (4) preservation of lamination with sponge spicules, and (5) lack of bioturbation suggesting that the stromatolites grew in a relatively low energy, deep-water setting. The stromatolite mounds are the first described stromatolite mounds in Mississippian strata of South China and contain evidence that supports interpretations of (1) growth history of Mississippian microbial buildups and (2) environmental controls on stromatolite growth and lithification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adams AE (1984) Development of algal-foraminiferal-coral reefs in the Lower Carboniferous of Furness, northwest England. Lethaia 17:233–249. doi:10.1111/j.1502-3931.1984.tb01623.x

    Article  Google Scholar 

  • Ahr WM (1989) Mississippian reef facies in the southwest: a spectrum of variations in depositional style and reservoir characteristics. In: Flis JE, Price RC, Sarg JF (eds) Search for the subtle trap––hydrocarbon exploration in mature basins. West Texas geological society, symposium publication, pp 1–19

  • Ahr WM, Stanton RJ Jr (1994) Comparative sedimentology and palaeontology of Waulsortian mounds and coeval level-bottom sediments of the lower lake valley formation (Lower Mississippian) in the Sacramento mountains (New Mexico, USA). Abh Geologischen Bundesanstalt 50:11–24

    Google Scholar 

  • Antoshkina AI (1998) Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia. Sediment Geol 118:87–211. doi:10.1016/S0037-0738(98)00012-8

    Article  Google Scholar 

  • Aretz M, Chevalier E (2007) After the collapse of stromatoporoid-coral reefs––the Famennian and Dinantian reefs of Belgium: much more than Waulsortian mounds. In: Alvaro JJ, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennin E (eds) Palaeozoic reefs and bioaccumulations: climatic and evolutionary controls geological society of London special publication, vol 275, pp 163–188

  • Bancroft AJ, Somerville ID, Strank AE (1988) A bryozoan buildup from the Lower Carboniferous of North Wales. Lethaia 21:1–65. doi:10.1111/j.1502-3931.1988.tb01753.x

    Article  Google Scholar 

  • Bertrand-Sarfati J, Monty C (1994) Phanerozoic stromatolites II. Kluwer, Dordrecht, pp 1–471

    Google Scholar 

  • Bertrand-Sarfati JB (1994) Siliciclastic carbonate stromatolite domes, in the Early Carboniferous of the Ajjers basin (Eastern Sahara, Algeria). In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer, Amsterdam, pp 71–100

    Google Scholar 

  • Beukes NJ, Lowe DR (1989) Environmental control on diverse stromatolite morphologies in the 3000 Myr Pongola supergroup, South Africa. Sedimentology 36:383–397. doi:10.1111/j.1365-3091.1989.tb00615.x

    Article  Google Scholar 

  • Bourque PA, Madi A, Mamet BL (1995) Waulsortian-type bioherm development and response to sea-level fluctuations: upper Viséan of Béchar basin, Western Algeria. J Sediment Res B65:80–95

    Google Scholar 

  • Brachert TC (1999) Non-skeletal carbonate production and stromatolite growth within a Pleistocene deep ocean (Last Glacial maximum, Red Sea). Facies 40:211–228. doi:10.1007/BF02537475

    Article  Google Scholar 

  • Bridges PH, Gutteridge P, Pickard NAH (1995) The environmental setting of Early Carboniferous mud-mounds. In: Monty CLV, Bosence DWJ, Bridges PH, Pratt BR (eds) Carbonate mud-mounds: their origin and evolution. International association of sedimentologists, special publication, vol 23, pp 171–190

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an early Archean chert-barite unit from North-Pole, Western-Australia. Alcheringa 5:161–181. doi:10.1080/03115518108566999

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254. doi:10.2307/3514674

    Article  Google Scholar 

  • Caplan ML, Bustin RM (1999) Devonian-Carboniferous Hangenberg mass extinction event, widespread organic-rich mudrock and anoxia: causes and consequences. Palaeogeogr Palaeoclimatol Palaeoecol 148:187–207. doi:10.1016/S0031-0182(98)00218-1

    Article  Google Scholar 

  • Chen HM, Wu XH, Zhang Y, Li YX, Wen QY (1994) Carboniferous lithofacies, palaeogeography and mineralization in South China. Geological Publishing House, Beijing (in Chinese)

  • Christopher CC (1990) Late Mississippian Girvanella-bryozoan mud mounds in southern West Virginia. Palaios 5:460–471. doi:10.2307/3514838

    Article  Google Scholar 

  • Chuvashov BL, Anfimov AL (2007) On the taxonomy of the paleozoic red algae of the family Ungdarellaceae. Paleontol J 41:95–102. doi:10.1134/S0031030107010108

    Article  Google Scholar 

  • Della Porta G, Kenter JAM, Bahamonde JR, Immenhauser A, Villa E (2003) Microbial boundstone dominated carbonate slope (upper Carboniferous, N Spain): microfacies, lithofacies distribution and stratal geometry. Facies 49:175–208

    Google Scholar 

  • Denver LE II, Kaesler RL (1992) Paleoenvironmental significance of stromatolites in the Americus Limestone Member (Lower Permian, midcontinent, USA). Kansas University, Paleontological contributions. N Series, vol 1, pp 1–11

  • Dix GR, James JP (1987) Late Mississippian bryozoan/microbial build-ups on a drowned karst terrain, Port Au Port Peninsula, western Newfoundland. Sedimentology 34:779–793. doi:10.1111/j.1365-3091.1987.tb00802.x

    Article  Google Scholar 

  • Elicki O (1999) Palaeoecological significance of calcimicrobial communities during ramp evolution: an example from the lower Cambrian of Germany. Facies 41:27–39. doi:10.1007/BF02537458

    Article  Google Scholar 

  • Fang SX, Hou FH (1985) Bryozoan-coral patch reef of Da-Tang age of Carboniferous period of Langping area, Tianlin County, Guangxi Province. J Southwest Petrol Inst 23:1–15 (in Chinese)

    Google Scholar 

  • Fang SX, Hou FH (1989) Bryozoan-coral patch reefs of the Carboniferous carbonate platform, Langping area, Tianling County, Guangxi, China. In: XI Congress International de Stratigraphie et de Geologie du Carbonifere, Beijing, 1987, vol 4, pp 19–25

  • Fisher AG (1981) Climatic oscillations in the biosphere. In: Nitecki MH (ed) Biotic crises in ecological and evolutionary time. Academic Press, New York, pp 103–131

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic, Cambridge University Press, Cambridge, 274 pp

  • Gao YQ, Yang FQ, Peng YQ (2005) Characteristics of late Permian deep-water sedimentary environments: a case study of Shaiwa Section, Ziyun County, Guizhou Province, Southwestern China. J China Univ Geosci 1:12–24

    Google Scholar 

  • Gebelein CD (1976) Open marine subtidal and intertidal stromatolites (Florida, the Bahamas and Bermuda). In: Walter MR (ed) Stromatolites. Developments in sedimentology. Elsevier, New York, pp 381–388

    Google Scholar 

  • George AD (1999) Deep-water stromatolites, Canning Basin, northwestern Australia. Palaios 14:493–505. doi:10.2307/3515399

    Article  Google Scholar 

  • Gòmez-Pérez I (2003) An Early Jurassic deep-water stromatolitic bioherm related to possible methane seepage (los Molles Formation, Neuquen, Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 201:21–49. doi:10.1016/S0031-0182(03)00508-X

    Article  Google Scholar 

  • Guirdham C, Andrews JE, Browne MAE, Dean MT (2003) Stratigraphic and palaeoenvironmental significance of microbial carbonates in the Asbian Sandy Craig formation of fife. Scott J Geol 39:151–168

    Google Scholar 

  • Guangxi Bureau of Geology and Mineral Resources (1985) Regional geology of Guangxi Zhuang autonomous region. Geological Publishing House, Beijing (in Chinese)

  • Haikawa T, Ota M (1978) A Lower Carboniferous coral reef found in the Nagatophyllum satoi zone of the Akiyoshi Limestone Group, southwest Japan. Bull Akiyoshi-dai Mus Nat Hist 13:1–13

    Google Scholar 

  • He WH, Shen SZ, Feng QL, Gu SZ (2005) A late Changhsingian (Late Permian) deep water brachiopod fauna from the Talung Formation at the Dongpan section, Southern Guangxi, South China. J Paleontol 79:927–938. doi:10.1666/0022-3360(2005)079[0927:ALCLPD]2.0.CO;2

    Article  Google Scholar 

  • Hoffman P (1974) Shallow and deep-water stromatolites in lower Proterozoic platform-to-basin facies change, Great Slave Lake, Canada. Am Assoc Pet Geol Bull 58:856–867

    Google Scholar 

  • Hofman HJ (1994) Quantitative stromatolitology. J Paleontol 68:704–709

    Google Scholar 

  • Horbury AD (1992) A Late Dinantian peloid cementstone-palaeoberesellid buildup from Lancashire, England. Sediment Geol 79:107–137. doi:10.1016/0037-0738(92)90007-E

    Article  Google Scholar 

  • Horodyski RJ (1977) Environmental influences on columnar stromatolite branching patterns: examples from the middle Proterozoic belt supergroup, Glacier National Park, Montana. J Paleontol 51:661–671

    Google Scholar 

  • Hou HF, Wu ZJ, Wu XH, Yang SP (1982) The carboniferous system of China (Stratigraphy of China, No.1). Geological Publishing House, Beijing, pp 187–218 (in Chinese)

  • James NP (1983) Reef envrironment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. American association of petroleum geologists, Memoir, vol 33, pp 346–440

  • James NP, Bourque PA (1992) Reefs and mounds. In: Walker RG, James NP (eds) Facies models: response to sea level change, Chap 17. Geological association of Canada

  • Jull PK (1968) The Lower Carboniferous limestones in the Monto-Old Cannindah distinct: a brief description and a proposed name. J Qld Gov Min 69:199–201

    Google Scholar 

  • Kirkham A (2005) Thrombolitic-Ortonella reefs and their bacterial diagenesis, upper Viséan Clifton down limestone, Bristol area, SW England. Proc Geol Assoc 116:221–234

    Article  Google Scholar 

  • Kuang GD, Li JX, Zhong K, Su YB, Tao YB (1999) Carboniferous of Guangxi, Stratigraphy of Guangxi, China Part 2. China University of Geosciences Press, Wuhan, pp 1–258 (in Chinese)

    Google Scholar 

  • Lane HR, Ormiston A-R (1982) Waulsortian facies, Sacramento mountains, New Mexico: guide for an international field seminar, 2–6 March, 1982. In: Bolton K, Lane HR, Le Mone DV (eds) Symposium on the paleoenvironmental setting and distribution of the Waulsortian Facies. El Paso, Texas, El Paso geological society and University of Texas at El Paso, pp 115–182

  • Lauwers AS (1992) Growth and diagenesis of cryptalgal-bryozoan buildup within a middle Viséan (Dinantian) cyclic sequence, Belgium. Ann Soc Geologique Belg 115:187–213

    Google Scholar 

  • Logan BW, Hoffman P, Gebelein CD (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. American association of petroleum geologists. Memoir 22:140–194

    Google Scholar 

  • Madi A, Bourque P-A, Mamet BL (1996) Depth-related ecological zonation of a Carboniferous carbonate ramp: upper Viséan of Béchar basin, western Algeria. Facies 35:59–80. doi:10.1007/BF02536957

    Article  Google Scholar 

  • Maslov VP (1956) Iskopayemyye izvestkovye vodorosli SSSR (Fossil calcareous algae of the USSR). Akademiya Nauk SSSR. Tr Geologicheskogo Inst 160:1–301

    Google Scholar 

  • Mundy DJC (1994) Microbialite-sponge-bryozoan-coral framestones in lower Carboniferous (late Viséan) buildups of northern England (UK). Canadian society of petroleum geologists. Memoir 17:713–729

    Google Scholar 

  • Nakazawa T (2001) Carboniferous reef succession of the Panthalassan open-ocean setting: example from Omi Limestone, Central Japan. Facies 44:183–210. doi:10.1007/BF02668174

    Article  Google Scholar 

  • Newell ND (1972) The evolution of reefs. Sci Am 226:54–65

    Article  Google Scholar 

  • Ota M (1968) The Akiyoshi Limestone Group: a geosynclinal organic reef complex. Bull Akiyoshi-dai Sci Mus Nat Hist 5:1–44

    Google Scholar 

  • Pareyn C (1959) Les récifs carbonifères du Grand Erg occidental. Bull Soc Geologique Fr Ser 71:347–364

    Google Scholar 

  • Peckmann J, Gischler E, Oschmann W, Reitner J (2001) An Early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29:271–274. doi:10.1130/0091-7613(2001)029<0271:AECSCA>2.0.CO;2

    Article  Google Scholar 

  • Peryt TM (1975) Significance of stromatolites for the environmental interpretation of the Bundsandstein (Lower Triassic) rocks. Geol Rundsch 64:143–158. doi:10.1007/BF01820659

    Article  Google Scholar 

  • Petrov PY, Semikhatov MA (2001) Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia. Precambrian Res 111:257–281. doi:10.1016/S0301-9268(01)00163-2

    Article  Google Scholar 

  • Pickard NAH (1992) Depositional controls on lower Carboniferous microbial buildups, eastern Midland Valley of Scotland. Sedimentology 39:1081–1100. doi:10.1111/j.1365-3091.1992.tb01998.x

    Article  Google Scholar 

  • Pickard NAH (1996) Evidence for microbial influence on the development of lower Carboniferous buildups. In: Strogen P, Somerville ID, Jones GLI (eds) Recent advances in lower Carboniferous geology. Geological society, London, special publications, vol 107, pp 371–385

  • Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32:321–330

    Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1):179–214. doi:10.1046/j.1365-3091.2000.00003.x

    Article  Google Scholar 

  • Russo F, Mastandrea AC, Stefani M, Neri CF (2000) Carbonate facies dominated by syndepositional cements: a key composition of middle Triassic platforms. The Marmolada case history (Dolomites, Italy). Facies 42:211–226. doi:10.1007/BF02562573

    Article  Google Scholar 

  • Saltzman MR, González lA, Lohmann KC (2000) Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology 28:347–350. doi:10.1130/0091-7613(2000)28<347:ECCSTB>2.0.CO;2

  • Sano H, Kanmera K (1996) Microbial controls on Panthalassan Carboniferous––Permian ocean build-ups, Japan. Facies 34:239–255. doi:10.1007/BF02546167

    Article  Google Scholar 

  • Sawin RS, West RR, Twiss PC (1985) Stromatolite biostromes in the upper Carboniferous of Northeast Kansas. In: Dutro JT Jr, Pfeffekorn HW (eds) Neuvième Congrès International de Stratigraphie et de Geologie du Carbonifère Compte Rendu 5, paleontology, paleoecology, paleogeography. Southern Illinois University Press, Carbonadale and Edwardsville, Illinois, pp 361–372

  • Schenk PE (1967) The significance of algal stromatolites to paleoenvironmental and chronostratigraphic interpretations of the Windsorian stage (Mississippian), Maritime provinces. Special paper geological association of Canada, pp 229–243

  • Sheehan PM (1985) Reefs are not so different––they follow the evolution-any pattern of the level-bottom communities. Geology 13:23–33. doi:10.1130/0091-7613(1985)13<46:RANSDF>2.0.CO;2

    Article  Google Scholar 

  • Shen JW (2002) Effects of differing tectono-stratigraphic settings on late Devonian and Early Carboniferous reefs, Western Australia, eastern Australia, South China, and Japan. Unpublished Ph.D. thesis, University of Queensland, Brisbane

  • Shen JW, Webb GE (2005) Metazoan-microbial framework fabrics in a Mississippian (Carboniferous) coral-sponge-microbial reef, Monto, Queensland, Australia. Sediment Geol 178:113–133. doi:10.1016/j.sedgeo.2005.03.011

    Article  Google Scholar 

  • Shen JW, Webb GE (2008) The role of microbes in reef-building communities of the Cannindah limestone (Mississippian), Monto region, Queensland, Australia. Facies 54:89–105. doi:10.1007/s10347-007-0116-2

    Article  Google Scholar 

  • Skompski S, Paskowski M, Krobicki M, Kokovin K, Korn D, Tomas A, Wrzolek T (2001) Depositional setting of the Devonian/Carboniferous biohermal Bol’shaya Nadota carbonate complex, Subpolar Urals. Acta Geol Pol 51/3:217–235

    Google Scholar 

  • Somerville ID (2003) Review of Irish lower Carboniferous (Mississippian) mud-mounds: depositional setting, biota, facies and evolution. In: Ahr W, Harris AP, Morgan WA, Somerville ID (eds) Permo-Carboniferous carbonate platforms and reefs. Society for economic paleontologists and mineralogists, special publication 78 and American association of petroleum geologists Memoir 83: 239–252

  • Somerville ID, Pickard NAH, Strogen P, Jones GLI (1992) Early to mid-Viséan shallow water platform buildups, north Co. Dublin, Ireland. Geol J 27:151–172. doi:10.1002/gj.3350270205

    Article  Google Scholar 

  • Somerville ID, Strogen P, Jones GLI, Somerville HEA (1996) Late Viséan buildups of the Kingscourt Outlier, Ireland: Possible precursors for Upper Carboniferous bioherms. In: Strogen P, Somerville ID, Jones GLI (eds) Recent advances in lower Carboniferous geology. Geological society, London, special publications, vol 107, pp 127–144

  • Southgate P (1989) Relationships between cyclicity and stromatolite form in the late Proterozoic Bitter Springs Formation, Australia. Sedimentology 36:323–339. doi:10.1111/j.1365-3091.1989.tb00610.x

    Article  Google Scholar 

  • Toomey DF, Johnson JH (1968) Ungdarella americana, a new red alga from the Pennsylvanian of southeastern New Mexico. J Paleontol 42:556–560

    Google Scholar 

  • Von Bitter PM, Scott SD, Schenk PE (1990) Early Carboniferous low-temperature hydrothermal vent communities from Newfoundland. Nature 344:145–148. doi:10.1038/344145a0

    Article  Google Scholar 

  • Wang XD, Jin YG (2000) An outline of Carboniferous Chronostratigraphy. J Stratigr 24:90–98 (in Chinese)

    Google Scholar 

  • Wang XD, Wang X, Zhang F, Zhang H (2006) Diversity patterns in Carboniferous and Permian rugose corals in South China. Geol J 41(3–4):329–343. doi:10.1002/gj.1041

    Google Scholar 

  • Wang ZH (1990) Conodont zonation of the lower Carboniferous in South China and phylogeny of some important species. Courier Forschungsintitut Senckenberg 130:41–46

    Google Scholar 

  • Wang ZH, Lane HR, Manger WL (1987) Conodont sequence across the mid-Carboniferous boundary in China and its correlation with England and North American. In: Wang CY (ed) Carboniferous boundary in China. Science Press, Beijing, pp 89–106

    Google Scholar 

  • Webb GE (1987) Late Mississippian thrombolite bioherms from the Pitkin formation of Northern Arkansas. Bull Geol Soc Am 99:686–698. doi:10.1130/0016-7606(1987)99<686:LMTBFT>2.0.CO;2

    Article  Google Scholar 

  • Webb GE (1989) Late Viséan coral-algal bioherms from the Lion Creek formation of Queensland, Australia. In: XI Congress International de Stratigraphie et de Geologie du Carbonifere, Beijing, vol 3, pp 282–295

  • Webb GE (1996) Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43:947–971. doi:10.1111/j.1365-3091.1996.tb01513.x

    Article  Google Scholar 

  • Webb GE (1998) Earliest known Carboniferous shallow-water reefs, Gudman Formation (Tn 1 b), Queensland, Australia: implications for late Devonian reef collapse and recovery. Geology 26:951–954. doi:10.1130/0091-7613(1998)026<0951:EKCSWR>2.3.CO;2

    Article  Google Scholar 

  • Webb GE (1999) Youngst Early Carboniferous (late Viséan) shallow-water patch reefs in eastern Australia (Rockhampton Group, Queensland): combining quantitative micro-and macro-scale data. Facies 41:111–140. doi:10.1007/BF02537462

    Article  Google Scholar 

  • Webb GE (2002) Latest Devonian and Early Carboniferous reefs: depressed reef building following the middle Paleozoic collapse: In Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. SEPM special publication, vol 72, pp 239–269

  • Webb GE (2005) Quantitative analysis and paleoecology of earliest Mississippian microbial reefs, lowermost Gudman Formation, Queensland, Australia: not just post-disaster phenomena. J Sediment Res 75:875–894. doi:10.2110/jsr.2005.068

    Article  Google Scholar 

  • West RR (1988) Temporal changes in Carboniferous reef mound communities. Palaios 3:152–169. doi:10.2307/3514527

    Article  Google Scholar 

  • Zhang LX (1987) Carboniferous stratigraphy in China. Science Press, Beijing, pp 1–160

    Google Scholar 

Download references

Acknowledgments

The study was supported financially by the National Natural Science Foundation of China (Grant no. 40872078) and the Important Direction Project of Knowledge Innovation program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-234). The fieldwork was assisted by Profs. Zhou, H.L. and Zhang, Z.X. from the Geological Institute of Guangxi Bureau of Geology and Mineral Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wei Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, JW., Qing, H. Mississippian (Early Carboniferous) stromatolite mounds in a fore-reef slope setting, Laibin, Guangxi, South China. Int J Earth Sci (Geol Rundsch) 99, 443–458 (2010). https://doi.org/10.1007/s00531-008-0392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0392-2

Keywords

Navigation