Skip to main content
Log in

Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Variscan collision of peri-Gondwanan terranes led to a doubly vergent crustal wedge that was thicker than 55 km in the area of the Bohemian Massif. This crustal thickness resulted in a highly elevated Bohemian plateau with a topographic height >3–4 km. The Bohemian plateau was covered with unmetamorphic Paleozoic strata, all of which are today well preserved in the Tepla–Barrandian unit because of crustal-scale vertical slip along the Bohemian shear zone (BSZ). The BSZ forms a subvertical, ca. 500-km long and up to 2-km wide belt of dip–slip mylonites which show several 90° deflections in map view. Tepla-Barrandian-down movements were active under retrograde metamorphic conditions, starting with granulite and ceasing with greenschist facies conditions. As slip along the BSZ was largely vertical and led to a minimum throw of 10 km, this type of crustal-scale deformation is referred to as elevator tectonics. The elevator-style movements caused the juxtaposition of the supracrustal Tepla–Barrandian lid (the “elevator”) against high-grade rocks of the extruding orogenic root. The BSZ has further governed the foci of mantle-derived plutonism. New U–Pb zircon and monazite TIMS dating of six plutons suggest that emplacement of mantle-derived melts along the BSZ lasted for at least 20 m.y., starting with the emplacement of the Klatovy granodiorite at 347 +4/−3 Ma and ceasing with the emplacement of the Drahotin pluton at 328 ± 1 Ma. When taking into account the new ages of synkinematic plutons, the simultaneous vertical slip along the individual segments of the BSZ (North, West, and Central Bohemian shear zone) is bracketed to the period 343–337 Ma. Elevator tectonics was probably controlled by delamination of thickened mantle lithosphere that caused a dramatic thermal turnover and heating-up of the orogenic root. The overheated lower crust was thermally softened by anatexis and diffusion creep resulting in channel flow, vertical extrusion, fast uplift, and exhumation of the orogenic root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahrendt H, Clauer N, Hunzicker JC, Weber K (1983) Migration of folding and metamorphism in the Rheinisches Schiefergebirge deduced from K/Ar and Rb/Sr age determinations. In: Martin H, Eder FW (eds) Intracontinental fold belts. Springer, Berlin, pp 323–338

    Google Scholar 

  • Aftalion M, Bowes DR, Vrána S (1989) Early Carboniferous U–Pb zircon age for garnetiferous, perpotassic granulites, Blansky les massif, Czechoslovakia. N Jb Min Mh 4:145–152

    Google Scholar 

  • Alsdorf D, Nelson D (1999) Tibetan satellite magnetic low: evidence for widespread melt in the Tibetan crust? Geology 27:943–946. doi:10.1130/0091-7613(1999)027<0943:TSMLEF>2.3.CO;2

    Google Scholar 

  • Andrusov D, Corna O (1976) Über das Alter des Moldanubikums nach mikrofloristischen Untersuchungen. Geol Prace Spravy 65:81–89

    Google Scholar 

  • Arnaud NO, Vidal P, Tapponnier P, Matte P, Deng WM (1992) The high-K2O volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet Sci Lett 111:351–367. doi:10.1016/0012-821X(92)90189-3

    Google Scholar 

  • Arnold J, Jacoby WR, Schmeling H, Schott B (2001) Continental collision and the dynamic and thermal evolution of the Variscan orogenic crustal root—numerical models. J Geodyn 31:273–291. doi:10.1016/S0264-3707(00)00023-5

    Google Scholar 

  • Artmann E, Bues C, Scheuvens D, Zulauf G (2003) Zur tektonometamorphen Entwicklung der Zentralböhmischen Scherzone zwischen Svatá Kateřina und Rittsteig unter besonderer Berücksichtigung der Forschungsbohrung Rittsteig (Böhmische Masse). Geol Bavarica 107:63–94

    Google Scholar 

  • Beard BL, Medaris LG, Johnson CM, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-temperature group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111:468–483. doi:10.1007/BF00320902

    Google Scholar 

  • Beard BL, Medaris LG, Johnson CM, Jelínek E, Tonika J, Riciputi LR (1995) Geochronology and geochemistry of eclogites from the Mariánské Láznì Complex, Czech Republic: implications for Variscan orogenesis. Geol Rundsch 84:552–567. doi:10.1007/s005310050024

    Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Google Scholar 

  • Becker H, Altherr R (1992) Evidence from ultra-high-pressure marbles for recycling of sediments into the mantle. Nature 358:745–748. doi:10.1038/358745a0

    Google Scholar 

  • Becq-Giraudon JF, Montenat C, Vand den Driesche J (1996) Hercynian high-altitude phenomena in the French Massif Central: tectonic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:227–241. doi:10.1016/0031-0182(95)00081-X

    Google Scholar 

  • Berthelsen A (1992) Mobile Europe. In: Blundell D (ed) A continent revealed: the European geotraverse. Cambridge University Press, Reading, MA 1: 11–32

  • Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571

    Google Scholar 

  • Bittner D, Schmeling H (1995) Numerical modelling of melting processes and induced diapirism in the lower crust. Geophys J Int 123:59–70

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003a) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi:10.1016/S0009-2541(03)00165-7

    Google Scholar 

  • Black LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ, Foudoulis C (2003b) The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem Geol 200:171–188. doi:10.1016/S0009-2541(03)00166-9

    Google Scholar 

  • Blümel P, Schreyer W (1976) Progressive regional low-pressure metamorphism in Moldanubian metapelites of the northern Bavarian Forest, Germany. Krystalinikum 12:7–30

    Google Scholar 

  • Brown RL, Beaumont C, Willett SD (1993) Comparison of the Selkirk fan structure with mechanical models: implications for interpretations of the southern Canadian Cordillera. Geology 21:1015–1018. doi:10.1130/0091-7613(1993)021<1015:COTSFS>2.3.CO;2

    Google Scholar 

  • Bruguier O, Becq-Giraudon JF, Clauer N, Maluski H (2003) From late Visean to Stephanian: pinpointing a two-stage basinal evolution in the Variscan belt: a case study from the Bosmoreau basin (French Massif Central) and its geodynamic implications. Int J Earth Sci 92:338–347. doi:10.1007/s00531-003-0321-3

    Google Scholar 

  • Bues C, Zulauf G (2000) Microstructural evolution and geologic significance of garnet pyriclasites in the Hoher-Bogen shear zone (Bohemian Massif, Germany). Int J Earth Sci 88:803–813. doi:10.1007/s005310050307

    Google Scholar 

  • Bues C, Dörr W, Fiala J, Vejnar Z, Zulauf G (2002) Emplacement depth and radiometric ages of Paleozoic plutons of the Neukirchen-Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse (Bohemian Massif). Tectonophysics 352:225–243. doi:10.1016/S0040-1951(02)00198-1

    Google Scholar 

  • Burchfiel BC, Zhiliang C, Hodges KV, Yuping L, Royden LH, Changrong D, Jiene X (1992) The south Tibetan detachment system, Himalayan Orogen. Geol Soc Am Spec Pap 269:1–41

    Google Scholar 

  • Burg JP, Brunel M, Gapais D, Chen GM, Liu GH (1984) Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). J Struct Geol 6:535–542. doi:10.1016/0191-8141(84)90063-4

    Google Scholar 

  • Burg JP, van den Driessche J, Brun JP (1994) Syn- to post-thickening extension: mode and consequences. C R Acad Sci Paris 319:1019–1032

    Google Scholar 

  • Büttner S, Kruhl JH (1995) The evolution of a late-Variscan high-T low-P region: the south-eastern margin of the Bohemian Massif. J Czech Geol Soc 40(3):4–5

    Google Scholar 

  • Cháb J, Suk M (1978) The metamorphic development of the Bohemian Massif on the Czechoslovak territory. Sborník geologických věd. Geologie 31:109–124

    Google Scholar 

  • Cháb J, Suchý V, Vejnar Z (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 404–410

    Google Scholar 

  • Chen F, Siebel W (2004) Zircon and titanite geochronology of the Fürstenstein granite massif, Bavarian Forest, NW Bohemian Massif: pulses of the late Variscan magmatic activity. Eur J Mineral 16:777–788. doi:10.1127/0935-1221/2004/0016-0777

    Google Scholar 

  • Chen F, Siebel W, Satir M (2003) Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian massif. Int J Earth Sci 92:173–184

    Google Scholar 

  • Chlupáč I (1993) Geology of the Barrandian. A field trip guide. Waldemar-Kramer, Frankfurt a.M., p 163

  • Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, p 183

  • Chung S-L, Liu D, Ji J, Chu M-F, Lee H-Y, Wen D-J, Lo C-H, Lee T-Y, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024. doi:10.1130/G19796.1

    Google Scholar 

  • Cílek V, Dobeš P, Žák K (1994) Formation conditions of calcite veins in the quarry “V Kozle (Hostim I, Alkazar)” in the Bohemian Karst. J Czech Geol Soc 39(4):313–318

    Google Scholar 

  • Coney PJ, Harms TA (1984) Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology 12:550–554. doi:10.1130/0091-7613(1984)12<550:CMCCCE>2.0.CO;2

    Google Scholar 

  • Dallmeyer RD, Urban M (1998) Variscan versus Cadomian tectonothermal activity in northwestern sectors of the Teplá–Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106. doi:10.1007/s005310050192

    Google Scholar 

  • Dallmeyer RD, Neubauer F, Höck V (1990) 40Ar/39Ar mineral age controls on the chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo–Silesian zones). IGCP meeting Terranes in the Circum-Atlantic Paleozoic orogens: Göttingen-Giessen, Field guide Bohemian Massif, pp 87–96

  • Dallmeyer RD, Neubauer F, Höck V (1992) Chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo–Silesian zones): 40Ar/39Ar mineral age controls. Tectonophysics 210:135–153. doi:10.1016/0040-1951(92)90132-P

    Google Scholar 

  • Davies JH, von Blankenburg F (1995) Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102. doi:10.1016/0012-821X(94)00237-S

    Google Scholar 

  • Dewey JF (1988) Extensional collapse of orogens. Tectonics 7:1123–1139. doi:10.1029/TC007i006p01123

    Google Scholar 

  • Dewey JF, Hempton MR, Kidd WSF, Saroglu F, Şengör AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Spec Publ 19:3–36

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex—evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 87:135–149. doi:10.1007/s005310050195

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Tepl Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85. doi:10.1016/S0040-1951(02)00189-0

    Google Scholar 

  • Dvořak J (1982) The Devonian and lower Carboniferous in the basement of the Carpathians, south and southeast of Ostrava (Upper Silesian coal basin, Moravia, Czechoslovakia). Z Dtsch Geol Ges 133:551–570

    Google Scholar 

  • Echtler H, Malavielle J (1990) Extensional tectonics, basement uplift and Stephano–Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, Southern Massif Central). Tectonophysics 177:125–138. doi:10.1016/0040-1951(90)90277-F

    Google Scholar 

  • Edel JB, Schulmann K, Holub FV (2003) Anticlockwise rotations of the Eastern Variscides accommodated by dextral lithospheric wrenching: paleomagnetic and structural evidence. J Geol Soc London 160:209–218. doi:10.1144/0016-764902-035

    Google Scholar 

  • Elington BM, Harmer RE (1991) Geodate division of earth, marine and atmospheric science and technology, Pretoria

  • England P (1993) Convective removal of thermal boundary layer of thickened continental lithosphere: a brief summary of causes and consequences with special reference to the Cenozoic tectonics of the Tibetan Plateau and surrounding regions. Tectonophysics 223:67–73. doi:10.1016/0040-1951(93)90158-G

    Google Scholar 

  • England P, Houseman GA (1989) Extension during continental convergence, with application to the Tibetan Plateau. J Geophys Res 94:17,561–17579. doi:10.1029/JB094iB12p17561

    Google Scholar 

  • Faure M, Grolier J, Pons J (1993) Extensional ductile tectonics of the Sioule metamorphic series (Variscan French Massif Central). Geol Rundsch 82:461–474. doi:10.1007/BF00212410

    Google Scholar 

  • Faure M, Monié P, Pin C, Maluski H, Leloix C (2002) Late Visean thermal event in the northern part of the French Massif Central: new 40Ar–39Ar and Rb–Sr isotopic constraints on the Hercynian syn-orogenic extension. Int J Earth Sci 91:53–75. doi:10.1007/s005310100202

    Google Scholar 

  • Fielding EJ (1996) Tibet uplift and erosion. Tectonophysics 260:55–84. doi:10.1016/0040-1951(96)00076-5

    Google Scholar 

  • Finger F, Gerdes A, Janousek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases. J Geosci (Prague) 52:9–28. doi:10.3190/jgeosci.005

    Google Scholar 

  • Franců E, Mann U, Suchý V, Volk H (1998) Model of burial and thermal history of the Tobolka-1 borehole profile in the Prague basin. Acta Univ Carol Geol 42:248–249

    Google Scholar 

  • Franěk J, Schulmann K, Lexa O (2006) Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic. Min Petrol 86:253–276. doi:10.1007/s00710-005-0114-4

    Google Scholar 

  • Frasl G, Finger F (1991) Geologisch-Petrographische Exkursion in den österreichischen Teil des Südböhmischen Batholiths. Eur J Mineral 3(2):23–40

    Google Scholar 

  • Friedl G (1997) U/Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. Dissertation, University of Salzburg, p 242

  • Friedl G, von Quadt A, Finger F (1994) 340 Ma U/Pb-Monazitalter aus dem niederösterreichischen Moldanubikum und ihre geologische Bedeutung. Terra Nostra 3(94):43–46

    Google Scholar 

  • Friedl G, Finger F, Paquette J-L, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823. doi:10.1007/s00531-004-0420-9

    Google Scholar 

  • Fritz H, Dallmeyer RD, Neubauer F (1996) Thick-skinned versus thin-skinned thrusting: rheology controlled thrust propagation in the Variscan collisional belt (the southeastern Bohemian Massif, Czech Republic, Austria). Tectonics 15:1389–1413. doi:10.1029/96TC01098

    Google Scholar 

  • Froidevaux C, Ricard Y (1987) Tectonic evolution of high plateaus. Tectonophysics 134:227–238. doi:10.1016/0040-1951(87)90259-9

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol Bundesanst 119:1–43

    Google Scholar 

  • Gebauer D (1991) Two Paleozoic high-pressure events in a garnet-peridotite of northern Bohemia, Czechoslovakia. Abstract of the 2nd Eclogite Field Symposium, Granada. Terra Abstract, Terra Nova 3

  • Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the Central European continental crust since the Early Archaean based on conventional and ion-microprobe dating of up to 384 by old detrital zircons. Tectonophysics 157:81–96. doi:10.1016/0040-1951(89)90342-9

    Google Scholar 

  • Gerdes A, Wörner G, Finger F (2000) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg pluton, Austria. Geol Soc Lond Spec Publ 179:415–431

    Google Scholar 

  • Gerdes A, Finger F, Parrish RR (2006) Southwestward progression of a late-orogenic heat front in the Moldanubian zone of the Bohemian Massif and formation of the Austro-Bavarian anatexite belt. Geophys Res Abstr 8:10698

    Google Scholar 

  • Gerya T, Stöckhert B (2006) Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci 95:250–274. doi:10.1007/s00531-005-0035-9

    Google Scholar 

  • Glasmacher UA, Mann U, Wagner GA (2002) Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apaptite fission-track analysis. Tectonophysics 359:381–402. doi:10.1016/S0040-1951(02)00538-3

    Google Scholar 

  • Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallization and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch 87:124–134. doi:10.1007/s005310050194

    Google Scholar 

  • Grauert B, Hänny R, Soptrajanova G (1974) Geochronology of a polymetamorphic and anatectic gneiss region: the Moldanubicum of the area Lam–Deggendorf, Eastern Bavaria, Germany. Contrib Mineral Petrol 45:37–63. doi:10.1007/BF00371136

    Google Scholar 

  • Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. J Geol Soc London 158:137–150

    Article  Google Scholar 

  • Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides—a discussion of potential heat sources. Geol Soc Spec Publ 179:387–399

    Google Scholar 

  • Heuer B, Geissler WH, Kind R, Kämpf H (2006) Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys Res Lett 33:L05311. doi:10.1029/2005GL025158

    Google Scholar 

  • Heuer B, Kämpf H, Kind R, Geissler WH (2007) Seismic evidence for whole lighosphere separation between Saxothuringian and Moldanubian tectonic units in central Europe. Geophys Res Lett 34:L09304. doi:10.1029/2006GL029188

  • Hodges KV, Parrish RR, Housh TB, Lux DR, Burchfield BC, Royden LH, Chen Z (1992) Simultaneous Miocene extension and shortening in the Himalayan orogen. Science 258:1466–1470. doi:10.1126/science.258.5087.1466

    Google Scholar 

  • Hodges KV, Hurtado JM, Whipple KX (2001) Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics 20:799

    Google Scholar 

  • Holub FV, Klečka M, Matějka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of central and eastern Europe. Springer, Berlin, pp 444–452

    Google Scholar 

  • Holub F, Cocherie A, Rossi Ph (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian–Barrandian boundary: C R Académie des Sciences Paris, Sciences de la terre et des planetes/. Earth Planet Sci 325:19–26

    Google Scholar 

  • Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res 86:6115–6132. doi:10.1029/JB086iB07p06115

    Google Scholar 

  • Inger S (1998) Timing of an extensional detachment during convergent orogeny: New Rb–Sr geochronological data from the Zanskar shear zone, northwest Himalaya. Geology 26:223–226. doi:10.1130/0091-7613(1998)026<0223:TOAEDD>2.3.CO;2

    Google Scholar 

  • Innocenti F, Mazzuoli R, Pasquare G, Radicati di Brozolo F, Villari L (1976) Evolution of volcanism in the area between the Arabian, Anatolian, and Iranian plates (Lake Van, Eastern Turkey). J Volcanol Geotherm Res 1:103–112. doi:10.1016/0377-0273(76)90001-9

    Google Scholar 

  • Jackson J, McKencie DP (1984) Active tectonics of the Alpine–Himalayan Belt between western Turkey and Pakistan. Geophys J R Astron Soc 77:185–264

    Google Scholar 

  • Jackson MPA, Vendeville BC (1994) Regional extension as a geologic trigger for diapirism. Geol Soc Am Bull 106:57–73. doi:10.1130/0016-7606(1994)106<0057:REAAGT>2.3.CO;2

    Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurements of half-lives and specific activities of 235U and 238U. Phys Rev Ser C4:1889–1906

    Google Scholar 

  • Janoušek V, Gerdes A (2003) Timing of magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U-Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48:70–71

    Google Scholar 

  • Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelinek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. doi:10.1093/petrology/41.4.511

    Google Scholar 

  • Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004a) Deciphering petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans R Soc Edinb Earth Sci 95:141–159. doi:10.1017/S0263593304000148

    Google Scholar 

  • Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004b) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99. doi:10.1016/j.lithos.2004.04.046

    Google Scholar 

  • Janoušek V, Gerdes A, Vrána S, Finger F, Erban V, Friedl G, Braithwaite CJR (2006) Low-pressure granulites of the Lišov Massif, Sothern Bohemia: Viséan metamorphism of late Devonian plutonic arc rocks. J Petrol 47:705–744. doi:10.1093/petrology/egi091

    Google Scholar 

  • Jin Y, Mc Nutt MK, Zhu Y (1994) Evidence from gravity and topography data for folding of Tibet. Nature 371:669–674. doi:10.1038/371669a0

    Google Scholar 

  • Kalt A, Berger A, Blümel P (1999) Metamorphic evolution of cordierite-bearing migmatites from the Bayerischer Wald (Variscan Belt, Germany). J Petrol 40:601–627. doi:10.1093/petrology/40.4.601

    Google Scholar 

  • Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P–T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163. doi:10.1007/s004100050014

    Google Scholar 

  • Kay RW, Mahlburg-Kay S (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi:10.1016/0040-1951(93)90295-U

    Google Scholar 

  • Kettner R (1917) Versuch einer stratigraphischen Einteilung des böhmischen Algonkiums. Geol Rundsch 8:169–188. doi:10.1007/BF01800895

    Google Scholar 

  • Klein T, Kiehm S, Siebel W, Shang CK, Rohrmüller J, Dörr W, Zulauf G (2008) Age and emplacemant of late Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos 102:478–507

    Google Scholar 

  • Konzalová M (1980) Zur mikropaläontologischen Erforschung graphitischer Gesteine im Südteil der Böhmischen Masse. Vest Ustr Ust Geol 55:233–236

    Google Scholar 

  • Košler J, Aftalion M, Bowes DR (1993) Mid-late Devonian activity in the Bohemian Massif: U–Pb zircon isotopic evidence from the Staré Sedlo and Mirotice gneiss complexes, Czech Republic. N Jb Min Mh 1993(9):417–431

    Google Scholar 

  • Kotková J, Harley SL, Fišera M (1997) A vestige of very high-pressure (ca 28 kbar) metamorphism in the Variscan Bohemian Massif, Czech Republic. Eur J Mineral 1997(9):1017–1033

    Google Scholar 

  • Kotková J, Novák M, Leichmann J, Houzar S (2001) Nature and provenance of exotic rock types from Lower Carboniferous conglomerates (Eastern Bohemian Massif). Geolines (Praha) 13:81

    Google Scholar 

  • Kreuzer H, Seidel E, Schüßler U, Okrusch M, Lenz L-L, Raschka H (1989) K–Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif. Tectonophysics 157:149–178. doi:10.1016/0040-1951(89)90348-X

    Google Scholar 

  • Kreuzer H, Müller P, Okrusch M, Patzak M, Schüßler U, Seidel E, Šmejkal V, Vejnar Z (1990) Ar–Ar conformation for Cambrian, Early Devonian, and Mid-Carboniferous Tectonic Units at the Western Margin of the Bohemian Massif: 6 Rundgespräch Geodynamik des europäischen Variszikums, 15-18111990, Clausthal-Zellerfeld (abstract)

  • Kreuzer H, Vejnar Z, Schüssler U, Okrusch M, Seidel E (1992) K–Ar dating on the Teplá–Domažlice Zone at the western margin of the Bohemian Massif. Proceedings of the first international conference on the Bohemian Massif, 269-1101988, Prague, pp 168–175

  • Krogh TE (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649. doi:10.1016/0016-7037(82)90165-X

    Google Scholar 

  • Kröner A, Willner AP (1998) Time of formation and peak of Variscan HP–HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132:1–20. doi:10.1007/s004100050401

    Google Scholar 

  • Kröner A, Wendt J, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Vaněk J (1988) U−Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266. doi:10.1007/BF00371466

  • Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142. doi:10.1007/s004100050013

    Google Scholar 

  • Krs M, Pruner P, Man O (2001) Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terrane. Tectonophysics 332:93–114. doi:10.1016/S0040-1951(00)00251-1

    Google Scholar 

  • Ludwig KR (1991) PBDAT version 123 open file US Geological Survey

  • Ludwig KR (1999) Users manual for Isoplot/EX, version 2 A geochronological toolkit for Microsoft Excel

  • Martinez-Torres LM, Ramon-Lluch R, Eguiluz L (1994) Tectonic wedges: geometry and kinametic interpretation. J Struct Geol 16:1491–1494

    Google Scholar 

  • Masch L, Cetin B (1991) Gefüge, Deformationsmechanismen und Kinematik in ausgewählten Hochtemperatur-Mylonitzonen im Moldanubikum des Bayerischen Waldes. Geol Bavarica 96:7–27

    Google Scholar 

  • Massonne H-J (2001) First find of coesite in the ultrahigh-pressure metamorphic region of the Central Erzgebirge, Germany. Eur J Mineral 13:565–570. doi:10.1127/0935-1221/2001/0013-0565

    Google Scholar 

  • Massonne H-J, Nasdala L (2003) Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous quartzofeldspathic rock from the Erzgebirge, Germany. Am Mineral 88:883–889

    Google Scholar 

  • Mattauer M, Brunel M, Matte P (1988) Failles normales ductiles et grands chevauchements Une nouveile analogie entre l’Himalaya et la chaine hercynienne du Massif Central Français. C R Acad Sc Paris 306:671–676

    Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan shearing. Tectonophysics 177:151–170. doi:10.1016/0040-1951(90)90279-H

    Google Scholar 

  • Mc Kenna LW, Walker JD (1990) Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area, northern Tibet, and their implications for the formation of the Tibetan Plateau. J Geophys Res 95:21483–21502

    Google Scholar 

  • Medaris LG, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelínek E, Mísař Z (1995) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geol Rundsch 84:489–505. doi:10.1007/s005310050020

    Google Scholar 

  • Medaris LG, Ghent ED, Wang HF, Fournelle Jelínek E (2006) The Spačice eclogite: constraints on the P–T–t history of the Gföhl granulite terrane, Moldanubian Zone, Bohemian Massif. Mineral Petrol 86:203–220. doi:10.1007/s00710-005-0095-3

    Google Scholar 

  • Meissner R, Bortfeld RK (1990) DEKORP-Atlas. Results of Deutsches Kontinentales Reflexionsseismisches Programm, p 19, 80 seismic profiles, 5 figures, Springer, Berlin

  • Ménard G, Molnar P (1988) Collapse of a Hercynian Tibetan Plateau into a late Paleozoic European Basin and Range province. Nature 334:235–237. doi:10.1038/334235a0

    Google Scholar 

  • Mengel K (1992) Integrated lithospheric cross section In: Blundell D (ed) A continent revealed: the European geotraverse. Cambridge University Press, Reading, MA, 1:102–110

  • Mercier J-L, Armijo R, Tapponnier P, Carey-Gailhardis E, Han TL (1987) Change from Tertiary compression to Quarternary extension in southern Tibet during the India–Asia collision. Tectonics 6:275–304. doi:10.1029/TC006i003p00275

    Google Scholar 

  • Molnar P (1988) A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philos Trans R Soc Lond A 326:33–88. doi:10.1098/rsta.1988.0080

    Google Scholar 

  • Molnar P, Taponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189:419–426. doi:10.1126/science.189.4201.419

    Google Scholar 

  • Nakamura D, Svojtka M, Naemura K, Hirajima T (2004) Very high-pressure (>4 Gpa) eclogite associated with the Moldanubian zone garnet peridotite (Nove Dvory, Czech Republic). J Metamorph Geol 22:593–603. doi:10.1111/j.1525-1314.2004.00536.x

    Google Scholar 

  • Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Leshou C, Tan H, Wei W, Jones AG, Booker J, Unsworth M et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1687. doi:10.1126/science.274.5293.1684

    Google Scholar 

  • O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20. doi:10.1046/j.1525-1314.2003.00420.x

    Google Scholar 

  • Pacltová B (1986) Palynology of metamorphic rocks, a methodological study. Rev Palaeobot Palynol 48:347–356. doi:10.1016/0034-6667(86)90072-2

    Google Scholar 

  • Pearce JA, Bender JF, de Long SE, Kidd WSF, Low PJ, Guner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229. doi:10.1016/0377-0273(90)90018-B

    Google Scholar 

  • Pešek J (1996) Carboniferous of Central and Western Bohemia. Czech Geological Survey, Prague:1–97

  • Platt JP, England PC (1994) Convective removal of lithosphere beneath mountain belts: thermal and mechanical consequences. Am J Sci 294:307–336

    Google Scholar 

  • Propach G, Baumann A, Schulz-Schmalschläger M, Grauert B (2000) Zircon and monazite U–Pb ages of Variscan granitoid rocks and gneisses in the Moldanubian zone of eastern Bavaria, Germany. Neues Jahrb Geol Palaontol Monatsh 2000:345–377

    Google Scholar 

  • Reitz E (1992) Silurische Mikrosporen aus einem Biotit-Glimmerschiefer bei Rittsteig, Nördlicher Bayerischer Wald. N Jb Geol Paläont Mh: 351–358

  • Roberts MP, Finger F (1997) Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322. doi:10.1130/0091-7613(1997)025<0319:DUPZAF>2.3.CO;2

    Google Scholar 

  • Schäfer J, Dörr W (1995) Exhumation and accretion in a Variscan active margin as recorded in synorogenic clastic sediments. Terra Nova 7:119

    Google Scholar 

  • Schäfer J, Neuroth H, Ahrendt H, Dörr W, Franke W (1997) Accretion and exhumation at a Variscan active margin, recorded in the Saxothuringian flysch. Geol Rundsch 86:599–611. doi:10.1007/s005310050166

    Google Scholar 

  • Schaltegger U (1997) Magma pulses in the Central Variscan Belt: episodic melt generation and emplacement during lithospheric thinning. Terra Nova 9:242–245. doi:10.1111/j.1365-3121.1997.tb00021.x

    Google Scholar 

  • Scharbert S, Breiter K, Frank W (1997) The cooling history of the southern Bohemian Massif. J Czech Geol Soc 42:24

    Google Scholar 

  • Scherer EE, Mezger K, Münker C (2002) Lu–Hf ages of high pressure metamorphism in the Variscan fold belt of southern Germany. Geochim Cosmochim Acta 66(Supplement 1):A677

    Google Scholar 

  • Scheuvens D (1999) Die tektonometamorphe und kinematische Entwicklung im Westteil der Zentralböhmischen Scherzone (Böhmische Masse)—Evidenz für variszicischen Kollaps. Frankfurter Geowissenschaftliche Arbeiten 18:1–273. Frankfurt aM

    Google Scholar 

  • Scheuvens D (2002) Metamorphism and microstructures along a high-temperature metamorphic field gradient: the north-eastern boundary of the Královský Hvoszd unit (Bohemian Massif, Czech Republic). J Metamorph Geol 20:413–428. doi:10.1046/j.1525-1314.2002.00377.x

    Google Scholar 

  • Scheuvens D, Zulauf G (2000) Exhumation, strain localization, and emplacement of granitoids along the western part of the Central Bohemian shear zone (central European Variscides, Czech Republic). Int J Earth Sci 89:617–630. doi:10.1007/s005310000108

    Google Scholar 

  • Schott B, Schmeling H (1998) Delamination and detachment of a lithospheric root. Tectonophysics 296:225–247. doi:10.1016/S0040-1951(98)00154-1

    Google Scholar 

  • Schulmann K, Schaltegger U, Jezek J, Thompson AB, Edel JB (2002) Rapid burial and exhumation during orogeny: thickening and synconvergent exhumation of thermally weakened and thinned crust (Variscan orogen in western Europe). Am J Sci 302:856–879. doi:10.2475/ajs.302.10.856

    Google Scholar 

  • Schulmann K, Melka R, Lobkowicz MZ, Ledru P, Lardeaux J-M, Autran A (1994) Contrasting styles of deformation during progressive nappe stacking at the southeastern margin of the Bohemian Massif (Thaya Dome). J Struct Geol 16:355–370. doi:10.1016/0191-8141(94)90040-X

    Google Scholar 

  • Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan Orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448. doi:10.2475/ajs.305.5.407

    Google Scholar 

  • Şengör AMC, Kidd WSF (1979) Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics 55:361–376. doi:10.1016/0040-1951(79)90184-7

    Google Scholar 

  • Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270. doi:10.1016/0009-2541(95)00083-X

    Google Scholar 

  • Siebel W, Breiter K, Wendt I, Höhndorf A, Henjes-Kunst F, Rene M (1999) Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). Mineral Petrol 65:207–235. doi:10.1007/BF01161961

    Google Scholar 

  • Siebel W, Blaha U, Chen F, Rohrmüller J (2005) Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavaria Pfahl shear zone, Bohemian Massif. Int J Earth Sci 94:8–23. doi:10.1007/s00531-004-0445-0

    Google Scholar 

  • Siebel W, Thiel M, Chen F (2006) Zircon geochronology and compositional record of late to post-kinematic granitoids associated with the Bavarian Pfahl Zone (Bavarian Forest). Mineral Petrol 86:45–62. doi:10.1007/s00710-005-0091-7

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Google Scholar 

  • Štědrá V, Kachlík V, Kryza R (2002) Coronitic metagabbros in the Mariánské Lázně Complex and Tepla Crystalline Unit: inferences for the tectonometamorphic evolution of the western margin of the Tepla–Barrandian Unit, Bohemian Massif. In: Winchester JA Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society London Special Publications 201:217–236

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention of use of decay constants in geo-and cosmo-chronology. Earth Planet Sci Lett 36:359–362. doi:10.1016/0012-821X(77)90060-7

    Google Scholar 

  • Štípská P, Schulmann K, Kröner A (2004) Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). J Metamorph Geol 22:179–198. doi:10.1111/j.1525-1314.2004.00508.x

    Google Scholar 

  • Stosch H-G, Lugmair GW (1990) Geochemistry and evolution of MORB-type eclogites from the Münchberg Massif, southern Germany. Earth Planet Sci Lett 99:230–249. doi:10.1016/0012-821X(90)90113-C

    Google Scholar 

  • Suchý V, Rozkosny I (1996) Diagenesis of clay minerals and organic matter in the Pridoli Formation (Upper Silurian), the Barrandian Basin, Czech Republic: First Systematic Survey. In: Melka K (ed) 13th conference on clay mineralogy and petrology, Praha (1994), Acta Univ Carol Geol 38:401–409

  • Suchý V, Dobes P, Filip J, Stejskal M, Zeman A (2001) Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis. Tectonophysics 348:25–50. doi:10.1016/S0040-1951(01)00248-7

    Google Scholar 

  • Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Gebrüder Bornträger, Leipzig, pp 268

  • Svoboda J (1966) The Barrandian Basin The Železné hory Mountains and the metamorphic ‘islets’ of central Bohemia (Chrudim-Islets zone). In: Svoboda J, Beneš K, Dudek A, Dvořák J, Havlena V, Havlíček V, Holubec J, Horný R, Chalupský J, Chlupáč I, Klein V, Kodym O, Kopecký L, Malecha A, Malkovský M, Odehnal L, Polák A, Pouba Z, Sattran V, Soukup J, Škvor V, Tásler R, Václ J, Weiss J, Žebra K (eds) Regional geology of Czechoslovakia, Part I, the Bohemian Massif. Publishing House of Czechoslovak Academy of Sciences, Prague, pp 281–367

  • Svojtka M, Košler J, Venera Z (2002) Dating granulite-facies structures and the exhumation of lower crust in the Moldanubian Zone of the Bohemian Massif. Int J Earth Sci 91:373–385. doi:10.1007/s00531-001-0230-2

    Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (1986) On the mechanics of the collision between India and Asia. In: Coward MP, Riess AC (eds) Collision tectonics. Geol Soc London Spec Publ 19:115–157

  • Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U–Pb SHRIMP and Nd isotopic data from the western Bohemian Massif, Bayerischer Wald, Germany implications for Upper Vendian and Lower Ordovician magmatism. Int J Earth Sci 93:782–801. doi:10.1007/s00531-004-0419-2

    Google Scholar 

  • Teufel S (1988) Vergleichende U-Pb- und Rb-Sr-Altersbestimmungen an Gesteinen des Übergangsbereiches Saxothuringikum/Moldanubikum, NE-Bayern. Gottinger Arbeiten Geologie Palaontologie 35:1–87

    Google Scholar 

  • Thompson AB, Schulmann K, Jezek J (1997) Extrusion tectonics and elevation of lower crustal metamorphic rocks in convergent orogens. Geology 25:491–494. doi:10.1130/0091-7613(1997)025<0491:ETAEOL>2.3.CO;2

    Google Scholar 

  • Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338. doi:10.1093/petrology/egh020

    Google Scholar 

  • Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2005) Conventional and in-situ Geochronology of the Teplá Crystalline Unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–648. doi:10.1007/s00531-005-0060-8

    Google Scholar 

  • Tomek Č, Dvořáková, Vrána S (1997) Geological interpretation of the 9HR and 503M seismic profiles in western Bohemia. Sborník geologických věd. Geologie 47:43–50. doi:10.1016/S0013-7952(96)00118-4

  • Tonika J (1979) The Mutěnin ferrodiorite ring intrusion, West Bohemia. Krystalinikum 14:195–208

    Google Scholar 

  • Tropper P, Deibl I, Finger F, Kaindl R (2006) P–T–t evolution of spinel−cordierite−garnet gneisses form the Sauwald Zone (southern Bohemian Massif, Upper Austria): is there evidence for two independent late-Variscan low-P/high-T events in the Moldanubian Unit? Int J Earth Sci 95:1019–1037. doi:10.1007/s00531-006-0082-x

    Google Scholar 

  • Van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísa Z, Povondra P, Vrána S (1982) Geochronological studies in the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73:89–108

    Google Scholar 

  • Van den Driessche J, Brun J-P (1992) Tectonic evolution of the Montagne Noire (French Massif Central): a model of an extensional gneiss dome. Geodin Acta 5:85–101

    Google Scholar 

  • Ventura B, Lisker F (2003) Long-term landscape evolution of the northeastern margin of the Bohemian massif: apatite fission-track data form the Erzgebirge (Germany). Int J Earth Sci 92:691–700. doi:10.1007/s00531-003-0344-9

    Google Scholar 

  • Vejnar Z (1962) Zum Problem des absoluten Alters der kristallinen Schiefer und der Intrusiva des Westböhmischen Kristallins. Krystalinikum 1:149–159

    Google Scholar 

  • Vejnar Z (1966) Peridotites and serpentinites of the Česky les mountains. Krystalinikum 4:163–170

    Google Scholar 

  • Vejnar Z (1973) Petrochemistry of the Central Bohemian Pluton. Geochemie 2:1–116

    Google Scholar 

  • Vejnar Z (1975) Highly ferrous silicates from the Mutěnin ferrodiorite ring intrusion, West Bohemia. Věstnik Ústředniho Ústavu Geologického 50:265–273

    Google Scholar 

  • Vejnar Z (1977a) The relationships between the metamorphic grade and composition of silicates in the West-Bohemian greenschists and amphibolites. Krystalinikum 13:129–158

    Google Scholar 

  • Vejnar Z (1977b) The Babylon granite massif and its contact aureole, South-West Bohemia. Věstnik Ústředniho Ústavu Geologického 52:205–214

    Google Scholar 

  • Vejnar Z (1980) The spinel- and corundum-bearing basic intrusion of Drahotín, SouthWest Bohemia. Krystalininkum 15:33–54

    Google Scholar 

  • Vejnar Z (1982) Regionální metamõrfoza psamiticko-pelitických hornin domažlické oblasti. Sborník geologických věd, Prague, Geologie 37:9–70 (in Czech with English abstract)

    Google Scholar 

  • von Quadt A, Gebauer D (1993) Sm–Nd and U–Pb dating of eclogites and granulites from the Oberpfalz, NE Bavaria, Germany. Chem Geol 109:317–339. doi:10.1016/0009-2541(93)90078-W

    Google Scholar 

  • Vrána S, Novák M (2000) Petrology and geochemistry of granulite clasts in the Visean Luleč conclomerate, Kulm in central Moravia, Czech Republic. Věstník Českého Geologického Ústavu 75:405–413

    Google Scholar 

  • Wagner GA, Coyle DA, Duyster J, Henjes-Kunst F, Peterek A, Schröder B, Stöckhert B, Wemmer K, Zulauf G, Ahrendt H, Bischoff R, Hejl E, Jacobs J, Menzel D, Lal Nand, van den haute P, Vercoutere C, Welzel B (1997) Post-Variscan thermic and tectonic evolution of the KTB site and its surroundings. J Geophys Res 102(B8):18221–18232. doi:10.1029/96JB02565

  • Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2, 1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundsch 82:42–50. doi:10.1007/BF00563269

    Google Scholar 

  • Wendt JI, Kröner A, Fiala J, Todt W (1994) U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from South Bohemia, Czech Republic. J Geol Soc London 151:83–90. doi:10.1144/gsjgs.151.1.0083

    Google Scholar 

  • Werner O, Lippolt HJ (2000) White-mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. Geol Soc Lond Spec Publ 179:323–336

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace elements and REE analyses. Geostand Newsl 19:1–23. doi:10.1111/j.1751-908X.1995.tb00147.x

    Google Scholar 

  • Willet SD, Beaumont C, Fullsack P (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21:371–374. doi:10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2

    Google Scholar 

  • Willner AP, Sebazungu E, Gerya TV, Maresch WV, Krohe A (2002) Numerical modelling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony/Germany). J Geodyn 33:281–314. doi:10.1016/S0264-3707(01)00071-0

    Google Scholar 

  • Wulf S (1997) Typologie und Internstrukturen von Zirkonen syntektonischer Granitoide der Westböhmischen und Zentralböhmischen Scherzone. Dissertation, Giessen University, p 132

  • Wulf S, Dörr W, Zulauf G, Scheuvens D, Vejnar Z (1996) The Teplá–Barrandian/Moldanubian sstr boundary: zircon typology of fault-related alkalic and calc-alkalic plutons. Terra Nostra 96(2):196–205

    Google Scholar 

  • Yilmaz Y, Saroglu F, Goner Y (1987) Initiation of the neomagmatism in East Anatolia. Tectonophysics 134:177–199. doi:10.1016/0040-1951(87)90256-3

    Google Scholar 

  • Žáček J, Cháb J (1993) Metamorphism in the Tepla upland, Bohemian Massif, Czech Republic (preliminary report). Věstnik Českého Geologického Ústavu 68(3):33–37

    Google Scholar 

  • Žák J, Holub F, Verner K (2005a) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by multiple episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif, Czech Republic). Int J Earth Sci 94:385–400. doi:10.1007/s00531-005-0482-3

    Google Scholar 

  • Žák J, Schulmann K, Hrouda F (2005b) Multiple magmatic fabrics in the Sázava Pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822. doi:10.1016/j.jsg.2005.01.012

    Google Scholar 

  • Zulauf G (1994) Ductile normal faulting along the West-Bohemian shear zone (Moldanubian/Teplá–Barrandian boundary). Evidence for late Variscan extensional collapse in the Variscan internides. Geol Rundsch 83:276–292

    Google Scholar 

  • Zulauf G (1997a) Von der Anchizone bis zur Eklogitfazies: Angekippte Krustenprofile als Folge der cadomischen und variscischen Orogenese im Teplá-Barrandium (Böhmische Masse). Geotektonische Forsch 89:1–302

    Google Scholar 

  • Zulauf G (1997b) Constriction due to subduction: evidence for slab pull in the Mariánské Lázně complex (central European Variscides). Terra Nova 9:232–236. doi:10.1111/j.1365-3121.1997.tb00019.x

    Google Scholar 

  • Zulauf G (2001) Structural style, deformation mechanisms and paleostress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Tepla–Barrandian unit, Bohemian Massif). Tectonophysics 332:211–237. doi:10.1016/S0040-1951(00)00258-4

    Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dtsch Geol Ges 150:627–640

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Kotková J, Maluski H, Valverde-Vaquero P (2002a) Evidence for high-temperature diffusional creep preserved by rapid cooling of lower crust (North Bohemian shear zone, Czech Republic). Terra Nova 14:343–354. doi:10.1046/j.1365-3121.2002.00424.x

    Google Scholar 

  • Zulauf G, Bues C, Dörr W, Vejnar Z (2002b) 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864. doi:10.1007/s00531-001-0250-y

    Google Scholar 

Download references

Acknowledgments

We thank Z. Vejnar and J. Fiala for help in the field and J. Schastok for laboratory assistance. Helpful comments by F. Finger, S. Johnston, W. Siebel and A. Zelazniewicz are gratefully acknowledged. This work was supported by Deutsche Forschungsgemeinschaft (grants Zu 73-1 and Zu 73-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zulauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörr, W., Zulauf, G. Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci (Geol Rundsch) 99, 299–325 (2010). https://doi.org/10.1007/s00531-008-0389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0389-x

Keywords

Navigation