Skip to main content
Log in

Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We determined erosion rates on timescales of 101–104 years for two catchments in the northeastern Rhenish Massif, in order to unravel the Quaternary landscape evolution in a Variscan mountain range typical of central Europe. Spatially averaged erosion rates derived from in situ produced 10Be concentrations in stream sediment of the Aabach and Möhne watersheds range from 47 ± 6 to 65 ± 14 mm/ka and integrate over the last 9–13 ka. These erosion rates are similar to local rates of river incision and rock uplift in the Quaternary and to average denudation rates since the Mesozoic derived from fission track data. This suggests that rock uplift is balanced by denudation, i.e., the landscape is in a steady state. Short-term erosion rates were derived from suspended and dissolved river loads subsequent to (1) correcting for atmospheric and anthropogenic inputs, (2) establishing calibration curves that relate the amount of suspended load to discharge, and (3) estimating the amount of bedload. The resulting solid mass fluxes (suspended and bedload) agree with those derived from the sediment volume trapped in three reservoirs. However, resulting geogenic short-term erosion rates range from 9 to 25 mm/ka and are only about one-third of the rates derived from 10Be. Model simulations in combination with published sediment yield data suggest that this discrepancy is caused by at least three factors: (1) phases with higher precipitation and/or lower evapotranspiration, (2) rare flood events not captured in the short-term records, and (3) prolonged periods of climatic deterioration with increased erosion and sediment transport on hillslopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balco G, Stone JO, Lifton NA, Dunai TJ (2008) A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat Geochronol 3:174–195. doi:10.1016/j.quageo.2007.12.001

    Article  Google Scholar 

  • Beilke S, Uhse K, Jäschke M (2003) Jahresbericht 2002 aus dem Messnetz des Umweltbundesamtes. http://www.umweltdaten.de/publikationen/fpdf-l/2559.pdf, accessed 16 Jan 2008

  • Bierman P, Steig EJ (1996) Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf Process Landf 21:125–139. doi:10.1002/(SICI)1096-9837(199602)21:2<125::AID-ESP511>3.0.CO;2-8

    Article  Google Scholar 

  • Bodensystematik AK (1998) Systematik der Böden und bodenbildenden Substrate Deutschlands. Mitt Dtsch Bodenkd Ges 86:1–80

    Google Scholar 

  • Bork H-R, Bork H, Dalchow C, Faust B, Piorr H-P, Schatz T (1998) Landschaftsentwicklung in Mitteleuropa. Klett-Perthes, Gotha, p 328

  • Brown ET, Stallard RF, Larsen MC, Raisbeck GM, Yiou F (1995a) Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo Experimental Forest, Puerto Rico. Earth Planet Sci Lett 129:193–202. doi:10.1016/0012-821X(94)00249-X

    Article  Google Scholar 

  • Brown ET, Bourlès DL, Colin F, Raisbeck GM, Yiou F, Desgarceaux S (1995b) Evidence for muon-induced production of 10Be in near-surface rocks from the Congo. Geophys Res Lett 22:703–706. doi:10.1029/95GL00167

    Article  Google Scholar 

  • Brown ET, Colin F, Bourlès DL (2003) Quantitative evaluation of soil processes using in situ-produced cosmogenic nuclides. C R Geosci 335:1161–1171. doi:10.1016/j.crte.2003.10.004

    Article  Google Scholar 

  • Buhl D, Neuser RD, Richter DK, Riedel D, Roberts B, Strauss H et al (1991) Nature and nurture: environmental story of the River Rhine. Naturwissenschaften 78:337–346. doi:10.1007/BF01131605

    Article  Google Scholar 

  • Busch G, Ewald S (2000) Flache und tiefe Grundwässer im Warsteiner Massenkalk. In: Protokoll zum Festkolloquium Regionale Beiträge zur Hydrogeologie. insbesondere der Mineral- und Thermalwässer, Roetgen, pp 1–14

  • Clausen CD, Leuteritz K (1984) Geologische Karte von Nordrhein-Westfalen, Erläuterungen zu Blatt 4516 Warstein. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, p 155

  • Codilean AT (2006) Calculation of the cosmogenic nuclide production topographic shielding scaling factor for large areas using DEMs. Earth Surf Process Landf 31:785–794. doi:10.1002/esp.1336

    Article  Google Scholar 

  • Cyr AJ, Granger DE (2008) Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines, Italy. Geology 36:103–106. doi:10.1130/G24003A.1

    Article  Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332. doi:10.1016/0016-7037(94)90013-2

    Article  Google Scholar 

  • Dunai TJ (2000) Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth Planet Sci Lett 176:157–169. doi:10.1016/S0012-821X(99)00310-6

    Article  Google Scholar 

  • EEA (2000) CLC90 100 m, version 12/2000. European Environment Agency (EEA), Copenhagen. http://www.eea.eu.int. Accessed 16 January 2008

  • Ferrier KL, Kirchner JW, Finkel RC (2005) Erosion rates over millennial and decadal timescales at Caspar Creek and Redwood Creek, Northern California Coast Ranges. Earth Surf Process Landf 30:1025–1038. doi:10.1002/esp.1260

    Article  Google Scholar 

  • Flintrop C, Hohlmann B, Jasper T, Korte C, Podlaha OG, Scheele S et al (1996) Anatomy of pollution: rivers of North Rhine-Westfalia, Germany. Am J Sci 296:58–98

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Frank W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the variscan belt. Geological Society, London, Special Publications 179:35–61

  • Fuchs K, von Gehlen K, Malzer H, Murawski H, Semmel A (1983) Plateau uplift: the Rhenish Shield, a case history. Springer-Verlag, Berlin, p 411

    Google Scholar 

  • Garcia-Castellanos D, Cloetingh S, Van Balen R (2000) Modelling the Middle Pleistocene uplift in the Ardennes-Rhenish Massif: thermo-mechanical weakening under the Eifel? Glob Planet Change 27:39–52. doi:10.1016/S0921-8181(01)00058-3

    Article  Google Scholar 

  • Glasmacher U, Zentilli M, Grist AM (1998) Apatite fission-track thermochronology of Paleozoic sandstones and the Hill-intrusion, northern Linksrheinisches Schiefergebirge, Germany. In: Van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Solid earth sciences library vol. 10. Kluwer, Dordrecht, pp 151–172

    Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560. doi:10.1016/S0277-3791(00)00171-2

    Article  Google Scholar 

  • Granger DE, Riebe CS (2007) Cosmogenic nuclides in weathering and erosion. In: Holland HD, Turekian KK (eds) Surface and ground water, weathering, and soils. Treatise Geochem 5:1–43

  • Granger DE, Kirchner JW, Finkel R (1996) Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J Geol 104:249–257

    Article  Google Scholar 

  • Hack JT (1976) Dynamic equilibrium and landscape evolution. In: Melhorn WN, Flemal RC (eds) Theories of landform development. Publications in Geomorphology, Binghamton, pp 87–102

    Google Scholar 

  • Heimsath AM (2006) Eroding the land: steady-state and stochastic rates and processes through a cosmogenic lens. In: Siame LL, Bourlès DL, Brown ET (eds) In situ-produced cosmogenic nuclides and quantification of geological processes. Geol Soc Am Special Pap 415:111–129

  • Heisinger B, Lal D, Jull AJT, Kubik PW, Ivy-Ochs S, Neumaier S et al (2002a) Production of selected cosmogenic radionuclides by muons. 1. Fast muons. Earth Planet Sci Lett 200:345–355. doi:10.1016/S0012-821X(02)00640-4

    Article  Google Scholar 

  • Heisinger B, Lal D, Jull AJT, Kubik PW, Ivy-Ochs S, Knie K et al (2002b) Production of selected cosmogenic radionuclides by muons. 2. Capture of negative muons. Earth Planet Sci Lett 200:357–369. doi:10.1016/S0012-821X(02)00640-4

    Article  Google Scholar 

  • Hewawasam T, von Blanckenburg F, Schaller M, Kubik P (2003) Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31:597–600. doi:10.1130/0091-7613(2003)031<0597:IOHONE>2.0.CO;2

    Article  Google Scholar 

  • Hinderer M (2001) Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodin Acta 14:231–263. doi:10.1016/S0985-3111(01)01070-1

    Article  Google Scholar 

  • Hoffmann T, Erkens G, Cohen KM, Houben P, Seidel J, Dikau R (2007) Holocene floodplain sediment storage and hillslope erosion within the Rhine catchment. Holocene 17:105–118. doi:10.1177/0959683607073287

    Article  Google Scholar 

  • Judson S, Ritter DF (1964) Rates of regional denudation in the United States. J Geophys Res 69:3395–3401. doi:10.1029/JZ069i016p03395

    Article  Google Scholar 

  • Karg H, Carter A, Brix MR, Littke R (2005) Late- and post-Variscan cooling and exhumation history of the northern Rhenish massif and the southern Ruhr Basin: new constraints from fission-track analysis. Int J Earth Sci 94:180–192. doi:10.1007/s00531-005-0467-2

    Article  Google Scholar 

  • Kaspar E (1993) Der Feststofftransport der Wutach: Hochwasseranalysen und Frachtbilanzen des Schwebstoff- und Geröllaustrags. Tubinger Geowissensch Arb C15:203–215

    Google Scholar 

  • Kendall C, Doctor DH (2003) Stable Isotope Applications in Hydrologic Studies. In: Drever JI (ed) Surface and Ground Water, Weathering, and Soils. Treatise Geochem 5:319–364

  • Kirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG et al (2001) Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29:591–594. doi:10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2

    Article  Google Scholar 

  • Kober F, Ivy-Ochs S, Schlunegger F, Baur H, Kubik PW, Wieler R (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83:97–120. doi:10.1016/j.geomorph.2006.06.029

    Article  Google Scholar 

  • Koch M, Michel G, Schröter H (1974) Zur Hydrogeologie des Warsteiner Massenkalk-Gebietes (Nordöstliches Sauerland). Fortschr Geol Rheinl Westfal 20:195–214

    Google Scholar 

  • Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587. doi:10.1016/0016-7037(92)90401-4

    Article  Google Scholar 

  • Kubik PW, Ivy-Ochs S, Masarik J, Frank M, Schlüchter C (1998) 10Be and 26Al production rates from an instantaneous event within the dendro-calibration curve, the landslide of Köfels, Ötz Valley, Austria. Earth Planet Sci Lett 161:231–241. doi:10.1016/S0012-821X(98)00153-8

    Article  Google Scholar 

  • Lal D (1991) Cosmic ray labelling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439. doi:10.1016/0012-821X(91)90220-C

    Article  Google Scholar 

  • Laslett GM, Galbraith RF (1996) Statistical modelling of thermal annealing of fission-tracks in apatite. Geochim Cosmochim Acta 60:5117–5131. doi:10.1016/S0016-7037(96)00307-9

    Article  Google Scholar 

  • Lenzi MA, Marchi L (2000) Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena 39:267–282. doi:10.1016/S0341-8162(00)00079-5

    Article  Google Scholar 

  • Macaire J-J, Bossuet G, Choquier A, Cocirta C, de Luca P, Dupis A et al (1997) Sediment yield during Late Glacial and Holocene periods in the Lac Chambon watershed, Massif Central, France. Earth Surf Process Landf 22:472–489. doi:10.1002/(SICI)1096-9837(199705)22:5<473::AID-ESP710>3.0.CO;2-I

    Article  Google Scholar 

  • Martin Y (2003) Evaluation of bed load transport formulae using field evidence from the Vedder River, British Columbia. Geomorphology 53:75–95. doi:10.1016/S0169-555X(02)00348-3

    Article  Google Scholar 

  • Matsuoka N (1998) Modelling frost creep rates in an Alpine environment. Permafr Periglac Process 9:397–409. doi:10.1002/(SICI)1099-1530(199810/12)9:4<397::AID-PPP302>3.0.CO;2-Q

    Article  Google Scholar 

  • Meiburg P (1979) Terrassen-Niveaus und Vertikalbewegungen im Diemel-Gebiet. In: Protokoll zum 3. Kolloquium im DFG Schwerpunkt Vetrikalbewegungen und ihre Ursachen am Beispiel des Rheinischen Schildes, Neustadt, 20–25

  • Meyer W, Stets J (1998) Junge Tektonik im Rheinischen Schiefergebirge und ihre Quantifizierung. Z Dtsch Geol Ges 149:359–379

    Google Scholar 

  • Milde B (1996) Auswirkungen auf den Naturhaushalt. In: Westphal W, Prien KJ, Milde B, Bartmann L (eds) Die Aabach-Talsperre: Auswirkungen auf Landschaft, Wasserwirtschaft, Naturhaushalt und Fischerei. Schriftenreihe des Westfälischen Amtes für Landes- und Baupflege 11:33–53

  • Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Morel P, von Blankenburg F, Schaller M, Kubik PW, Hinderer M (2003) Lithology, landscape dissection and glaciation controls on catchment erosion as determined by cosmogenic nuclides in river sediment (the Wutach Gorge, Black Forest). Terra Nova 15:398–404. doi:10.1046/j.1365-3121.2003.00519.x

    Article  Google Scholar 

  • Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios in river water: the Congo Basin case. Earth Planet Sci Lett 120:59–76. doi:10.1016/0012-821X(93)90023-3

    Article  Google Scholar 

  • Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M et al (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123. doi:10.1126/science.267.5201.1117

    Article  Google Scholar 

  • Rickenmann D (1997) Sediment transport in swiss torrents. Earth Surf Process Landf 22:937–951. doi:10.1002/(SICI)1096-9837(199710)22:10<937::AID-ESP786>3.0.CO;2-R

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Granger DE, Finkel RC (2001) Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology 29:511–514. doi:10.1130/0091-7613(2001)029<0511:STAWCC>2.0.CO;2

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562. doi:10.1016/j.epsl.2004.05.019

    Article  Google Scholar 

  • Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14. doi:10.1016/S0012-821X(01)00226-6

    Article  Google Scholar 

  • Rovira A, Batalla RJ (2006) Temporal distribution of suspended sediment transport in a Mediterranean basin: the lower Tordera (NE SPAIN). Geomorphology 79:58–71. doi:10.1016/j.geomorph.2005.09.016

    Article  Google Scholar 

  • Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine river, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63:1277–1292. doi:10.1016/S0016-7037(99)00099-X

    Article  Google Scholar 

  • Schaller M, von Blanckenburg F, Hovius N, Kubik PW (2001) Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth Planet Sci Lett 188:441–458. doi:10.1016/S0012-821X(01)00320-X

    Article  Google Scholar 

  • Schaller M, von Blanckenburg F, Veldkamp A, Tebbens LA, Hovius N, Kubik PW (2002) A 30,000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet Sci Lett 204:307–320. doi:10.1016/S0012-821X(02)00951-2

    Article  Google Scholar 

  • Schmidt KH, Morche D (2006) Sediment output and effective discharge in two small high mountain catchments in the Bavarian Alps, Germany. Geomorphology 80:131–145. doi:10.1016/j.geomorph.2005.09.013

    Article  Google Scholar 

  • Semmel A (1968) Studien über den Verlauf jungpleistozäner Formung in Hessen. Frankf Geogr Hefte 45:1–133

    Google Scholar 

  • Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rates in major world drainage basins. J Geophys Res 99:13871–13883. doi:10.1029/94JB00715

    Article  Google Scholar 

  • Synal HA, Bonani G, Dobeli M, Ender RM, Gartenmann P, Kubik PW et al (1997) Status report of the PSI/ETH AMS facility. Nucl Instrum Methods Phys Res B 123:62–68. doi:10.1016/S0168-583X(96)00608-8

    Article  Google Scholar 

  • Vanacker V, von Blanckenburg F, Govers G, Molina A, Poesen J, Deckers J et al (2007) Restoring dense vegetation can slow mountain erosion to near natural benchmark levels. Geology 35:303–306. doi:10.1130/G23109A.1

    Article  Google Scholar 

  • Van Balen RT, Houtgast RF, Van der Wateren FM, Vandenberghe J, Bogaart PW (2000) Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System. Glob Planet Change 27:113–129. doi:10.1016/S0921-8181(01)00062-5

    Article  Google Scholar 

  • Völkel J (1995) Periglaziale Deckschichten und Böden im Bayrischen Wald und seinen Randgebieten als geogene Grundlagen landschaftsökologischer Forschung im Bereich naturnaher Waldstandorte. Z Geomorph N F 96(Suppl):1–301

  • Von Blanckenburg F (2006) The control of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 242:223–239. doi:10.1016/j.epsl.2005.10.007

    Article  Google Scholar 

  • Wigley TM, Plummer LN, Pearson FJ (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117–1139. doi:10.1016/0016-7037(78)90108-4

    Article  Google Scholar 

  • Willet SD, Brandon MT (2002) On steady states in mountain belts. Geology 30:175–178. doi:10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2

    Article  Google Scholar 

  • Wittmann H, von Blanckenburg F, Kruesmann T, Norton KP, Kubik PW (2007) Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. J Geophys Res 112:F04010. doi:10.1029/2006JF000729

    Article  Google Scholar 

  • Wortmann H (1937) Die Terrassen der Diemel zwischen Sauerland und Weser. Jahrb preuss geol Landesanst 57:359–413

  • Zolitschka B (1998) A 14, 000-year sediment yield record from western Germany based on annually laminated lake sediments. Geomorphology 22:1–17. doi:10.1016/S0169-555X(97)00051-2

    Article  Google Scholar 

  • Zolitschka B (2002) Late Quaternary sediment yield variations—natural versus human forcing. Z Geomorph N F 128(Suppl):1–15

    Google Scholar 

Download references

Acknowledgments

This research was funded by the German Research Foundation (DFG; grant HE-1704/5-1). We thank the staff of the Aabach-Talsperre, the Ruhrverband, and the Umweltamt Lippstadt for providing the discharge data, and A. Fugmann, L. Hooymann, and B. Romberg for help with the preparation of samples. Constructive reviews by F. Kober and S. Carretier improved the quality of the text and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, H., Hetzel, R. & Strauss, H. Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany. Int J Earth Sci (Geol Rundsch) 99, 395–412 (2010). https://doi.org/10.1007/s00531-008-0388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0388-y

Keywords

Navigation