Milankovic’s theory: multidimensional visualisation of the change of insolation and indicators of climatic change from 100000 before present to 100000 after present (in intervals of 1,000 years)


The deviation of the insolation on the earth’s surface from the past to the present and the present to the future for cloudless days is calculated in intervals of 1,000 years from 100000 years before present (BP) to 100000 years after present (AP), its basis being Milankovic’s theory. But the result are not the well-known Milankovic-curves, which are calculated for different latitudes and in which the x-axis represents years and the y-axis represents the insolation difference to present during the North-summer half-year. The calculations are made for each day of the selected years from the South Pole to the North Pole. Thus, two temporal dimensions are represented, that of a year and that of a day, furthermore the spatial dimension “latitude” and the dimension “energy” (insolation deviation). The performance of modern PCs allows the results of the calculations to be presented by a graphical animation. A determined deviation pattern of the insolation is obtained for each year. δ18O data, the mean global temperature and the additional ice volume on the continents are added to the graphic representations of those patterns for the period from 100000 years BP to the present. During that period insolation deviation patterns can be recognised which correlate with cool climates or climates getting cooler, and others which correlate with relatively warm climates or climates getting warmer. Correlations between the patterns are calculated and groups of similar patterns can be composed which can be associated in most cases with specific climatic conditions or specific climatic change. Comparison of patterns between 100000 years and present BP with patterns between present and 100000 years AP can help to estimate climatic change during the 100000 years ahead.

This is a preview of subscription content, log in to check access.


  1. Augsburger Beiträge zur Didaktik der Geographie, Heft 11, 1998

  2. Benn DI, Evans DJA (1998) Glaciers and glaciation. Edward Arnold, New York

    Google Scholar 

  3. Bielefeld B (1997) Investigation into albedo-controlled energy loss during last glaciation. GeoJournal 42(2–3):329–336

    Article  Google Scholar 

  4. Blüthgen J (1966) Allgemeine Klimageographie. 2. Auflage, Berlin

    Google Scholar 

  5. Chappel J, Skytus J (1995) Paleoclimatic modelling: a western pacific perspective. In: Giambelluca TW, Henderson-Sellers A (eds) Climate change. Wiley, Chichester, pp 175–193

    Google Scholar 

  6. Graßl H (1999) Wetterwende. Frankfurt/Main, New York

    Google Scholar 

  7. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132. doi:10.1126/science.194.4270.1121

    Article  Google Scholar 

  8. Herrmann J (2000) dtv-Atlas Astronomie. 14. Auflage, München

    Google Scholar 

  9. Ice core data. Accessed 10 Dec 2003

  10. Imbrie J, Imbrie KP (1979) Ice ages. Macmillan, New York

    Google Scholar 

  11. Klostermann J (1999) Das Klima im Eiszeitalter. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  12. Kuhle M (2001a) The glaciation of high Asia and its causal relation to the onset of ice ages. Erde 4/2001:339–359

    Google Scholar 

  13. Kuhle M (2001b) The Tibetan ice sheet; its impact on the palaeomonsoon and relation to the earth’s oribatal variations. Polarforschung 71(1/2):1–13

    Google Scholar 

  14. Kuhle M (2002) A relief-specific model of the ice age on the basis of uplift-controlled glacier areas in Tibet and the corresponding albedo increase as well as their positive climatological feedback by means of the global radiation geometry. Clin Res 20:1–7. doi:10.3354/cr020001

    Google Scholar 

  15. Lozán JL, Graßl H, Hupfer P (eds) (2001) Climate of the 21st century: changes and risks. Wissenschaftliche Auswertungen, Hamburg

    Google Scholar 

  16. Milankovic M (1936) Stellung und Bewegung der Erde im Weltall. Handbuch der Geophysik. Band I, Berlin, pp 69–138

  17. Milankovic M (1938) Astronomische Mittel zur Erforschung der erdgeschichtlichen Klimate. Handbuch Geophysik IX:593–698

    Google Scholar 

  18. Nilsson T (1983) The pleistocene. Geology and life in the quaternary ice age. F. Enke, Stuttgart

    Google Scholar 

  19. Photo on title page of the PowerPoint Presentation: Wieczorek U (5 Aug 1998) Aletsch Glacier, Switzerland

  20. Tiedemann R, Sarntheim M, Shackleton NJ (1994) Astronomic timescale for the pliocene atlantic δ18O and dust flux records of ocean drilling program site 659. Paleoceanography 9(4):619–638. doi:10.1029/94PA00208

    Article  Google Scholar 

  21. Wallace JM, Hobbs PV (1977) Atmospheric science. An introductory survey. Academic Press, New York

    Google Scholar 

  22. Wieczorek U (1998) Die theoretische Sonneneinstrahlung auf einen Erdoberflächenausschnitt im Tageslauf und im Jahreslauf. Ein Beispiel für die Vereinfachung eines geographisch bedeutsamen Sachverhalts. In: Schönbach R (ed) Vereinfachung geographischer und geographisch bedeutsamer Sachverhalte im Unterricht mit Beispielen von Ulrich Wieczorek, Dieter Hirschberg, Hans Hillenbrand

Download references

Author information



Corresponding author

Correspondence to Ulrich Wieczorek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PPT 15335 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wieczorek, U. Milankovic’s theory: multidimensional visualisation of the change of insolation and indicators of climatic change from 100000 before present to 100000 after present (in intervals of 1,000 years). Int J Earth Sci (Geol Rundsch) 99, 201–205 (2010).

Download citation


  • Milankovic theory
  • Visualisation
  • Insolation patterns
  • Climatic change
  • Ice age