International Journal of Earth Sciences

, Volume 99, Issue 1, pp 201–205 | Cite as

Milankovic’s theory: multidimensional visualisation of the change of insolation and indicators of climatic change from 100000 before present to 100000 after present (in intervals of 1,000 years)

  • Ulrich WieczorekEmail author
Original Paper


The deviation of the insolation on the earth’s surface from the past to the present and the present to the future for cloudless days is calculated in intervals of 1,000 years from 100000 years before present (BP) to 100000 years after present (AP), its basis being Milankovic’s theory. But the result are not the well-known Milankovic-curves, which are calculated for different latitudes and in which the x-axis represents years and the y-axis represents the insolation difference to present during the North-summer half-year. The calculations are made for each day of the selected years from the South Pole to the North Pole. Thus, two temporal dimensions are represented, that of a year and that of a day, furthermore the spatial dimension “latitude” and the dimension “energy” (insolation deviation). The performance of modern PCs allows the results of the calculations to be presented by a graphical animation. A determined deviation pattern of the insolation is obtained for each year. δ18O data, the mean global temperature and the additional ice volume on the continents are added to the graphic representations of those patterns for the period from 100000 years BP to the present. During that period insolation deviation patterns can be recognised which correlate with cool climates or climates getting cooler, and others which correlate with relatively warm climates or climates getting warmer. Correlations between the patterns are calculated and groups of similar patterns can be composed which can be associated in most cases with specific climatic conditions or specific climatic change. Comparison of patterns between 100000 years and present BP with patterns between present and 100000 years AP can help to estimate climatic change during the 100000 years ahead.


Milankovic theory Visualisation Insolation patterns Climatic change Ice age 

Supplementary material

531_2008_377_MOESM1_ESM.ppt (15 mb)
Supplementary material (PPT 15335 kb)


  1. Augsburger Beiträge zur Didaktik der Geographie, Heft 11, 1998Google Scholar
  2. Benn DI, Evans DJA (1998) Glaciers and glaciation. Edward Arnold, New YorkGoogle Scholar
  3. Bielefeld B (1997) Investigation into albedo-controlled energy loss during last glaciation. GeoJournal 42(2–3):329–336CrossRefGoogle Scholar
  4. Blüthgen J (1966) Allgemeine Klimageographie. 2. Auflage, BerlinGoogle Scholar
  5. Chappel J, Skytus J (1995) Paleoclimatic modelling: a western pacific perspective. In: Giambelluca TW, Henderson-Sellers A (eds) Climate change. Wiley, Chichester, pp 175–193Google Scholar
  6. Graßl H (1999) Wetterwende. Frankfurt/Main, New YorkGoogle Scholar
  7. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132. doi: 10.1126/science.194.4270.1121 CrossRefGoogle Scholar
  8. Herrmann J (2000) dtv-Atlas Astronomie. 14. Auflage, MünchenGoogle Scholar
  9. Imbrie J, Imbrie KP (1979) Ice ages. Macmillan, New YorkGoogle Scholar
  10. Klostermann J (1999) Das Klima im Eiszeitalter. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  11. Kuhle M (2001a) The glaciation of high Asia and its causal relation to the onset of ice ages. Erde 4/2001:339–359Google Scholar
  12. Kuhle M (2001b) The Tibetan ice sheet; its impact on the palaeomonsoon and relation to the earth’s oribatal variations. Polarforschung 71(1/2):1–13Google Scholar
  13. Kuhle M (2002) A relief-specific model of the ice age on the basis of uplift-controlled glacier areas in Tibet and the corresponding albedo increase as well as their positive climatological feedback by means of the global radiation geometry. Clin Res 20:1–7. doi: 10.3354/cr020001 Google Scholar
  14. Lozán JL, Graßl H, Hupfer P (eds) (2001) Climate of the 21st century: changes and risks. Wissenschaftliche Auswertungen, HamburgGoogle Scholar
  15. Milankovic M (1936) Stellung und Bewegung der Erde im Weltall. Handbuch der Geophysik. Band I, Berlin, pp 69–138Google Scholar
  16. Milankovic M (1938) Astronomische Mittel zur Erforschung der erdgeschichtlichen Klimate. Handbuch Geophysik IX:593–698Google Scholar
  17. Nilsson T (1983) The pleistocene. Geology and life in the quaternary ice age. F. Enke, StuttgartGoogle Scholar
  18. Photo on title page of the PowerPoint Presentation: Wieczorek U (5 Aug 1998) Aletsch Glacier, SwitzerlandGoogle Scholar
  19. Tiedemann R, Sarntheim M, Shackleton NJ (1994) Astronomic timescale for the pliocene atlantic δ18O and dust flux records of ocean drilling program site 659. Paleoceanography 9(4):619–638. doi: 10.1029/94PA00208 CrossRefGoogle Scholar
  20. Wallace JM, Hobbs PV (1977) Atmospheric science. An introductory survey. Academic Press, New YorkGoogle Scholar
  21. Wieczorek U (1998) Die theoretische Sonneneinstrahlung auf einen Erdoberflächenausschnitt im Tageslauf und im Jahreslauf. Ein Beispiel für die Vereinfachung eines geographisch bedeutsamen Sachverhalts. In: Schönbach R (ed) Vereinfachung geographischer und geographisch bedeutsamer Sachverhalte im Unterricht mit Beispielen von Ulrich Wieczorek, Dieter Hirschberg, Hans HillenbrandGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für GeographieUniversität AugsburgAugsburgGermany

Personalised recommendations