Skip to main content
Log in

Quantifying the role of sandy–silty sediments in generating slope failures during earthquakes: example from the Algerian margin

  • Review Article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Algerian margin is a seismically active region, where during the last century, several large magnitude earthquakes took place. This study combines geotechnical and sedimentological data with numerical modelling to quantitatively assess the present-day slope stability of the Algerian margin. Geotechnical laboratory tests, such as cyclic triaxial tests, oedometric tests and vane shear tests were carried out on sediment cores collected on the study area. The liquefaction potential of a sediment column located about 30 km from the Boumerdès earthquake epicentre of 21st May 2003 was evaluated theoretically for an earthquake of M w  = 6.8. We show that thin sand and silt beds such as those described on recovered sediment cores are the main cause of sediment deformation and liquefaction during earthquakes. Numerical calculations showed that the slope failure may occur during an earthquake characterised by a PGA in excess of 0.1g, and also that, under a PGA of 0.2g liquefaction could be triggered in shallow silty–sandy deposits. Moreover, comparison of the predicted slope failure with failure geometries inferred from seafloor morphology showed that earthquakes and subsequent mass movements could explain the present-day morphology of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Arulmoli K, Muraleetharan KK, Hosain MM, Fruth LS (1992) VELACS Laboratory Testing Program, Soil Data Report, The Earth Technology Corporation, Irvine, California, Report to the National Science Foundation, Washington D.C., March, 77 pp

  • Baptista MA, Miranda PMA, Miranda JM, Mendes Victor L (1998) Constrains on the source of the 1755 Lisbon tsunami inferred from numerical modelling of historical data. J Geodyn 25(2):159–174. doi:10.1016/S0264-3707(97)00020-3

    Article  Google Scholar 

  • Biscontin G, Pestana JM (2006) Factors affecting seismic response of submarine slopes. Nat Hazards Earth Syst Sci 6:97–107

    Article  Google Scholar 

  • Booth JS, O’Leary DW, Popenoe P, Danforth WW (1993) U.S. Atlantic continental slope landslides: their distribution, general attributes, and implication. In: Schwab WC, Lee HJ, Twichell DC (eds) Submarine landslides: selected studies in the U.S. exclusive economic zone, U.S. Geological Survey Bulletin 2002, pp 14–22

  • Bounif A, Dorbath C, Ayadi A, Meghraoui M, Beldjoudi H, Laouami N, Frogneux M, Slimani A, Alasset PJ, Kharroubi A, Ousadou F, Chikh M, Harbi A, Larbes S, Maouche S (2004) The 21 May 2003 Zemmouri (Algeria) earthquake Mw 6.8: Relocation and aftershock sequence analysis. Geophys Res Lett 31 (L19606). doi:10.1029/2004GL020586

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Langva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213:9–72. doi:10.1016/j.margeo.2004.10.001

    Article  Google Scholar 

  • Chen Z, Wang X, Haberfield C, Yin J, Wang Y (2001) A three-dimensional slope stability analysis method using the upper bound theorem. Part I. Theory and methods. Int J Rock Mech Min Sci 38:369–378. doi:10.1016/S1365-1609(01)00012-0

    Article  Google Scholar 

  • Dan G (2007) Processus gravitaires et évaluation de la stabilité des pente: approche géologique et géotechnique. Application à la marge algérienne et à l’effondrement de l’aéroport de Nice en 1979, Ph-D Thesis, UBO, 2007, 365 pp

  • Das BM (1983) Advanced soil mechanics. Taylor and Francis, London, 425 pp

  • Déverchère J (2003) MARADJA cruise report, IUEM

  • Déverchère J, Yelles K, Domzig A, Mercier de Lépinay B, Bouillin JP, Gaullier V, Bracène R, Calais E, Savoye B, Kherroubi A, Le Roy P, Pauc H, Dan G (2005) Active thrust faulting offshore Boumerdès, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophys Res Lett 32(L04311). doi:10.1029/2004GL021646

  • Domzig A, Yelles K, Le Roy C, Dévercère J, Bouillin JP, Bracène R, Mercier de Lépinay B, Le Roy P, Calais E, Kherroubi A, Gaullier V, Savoye B, Pauc H (2006) Searching for the Africa-Eurasia Moiocene boundary offshore western Algeria (MARADJA ’03 cruise). C R Geosci 338:80–91. doi:10.1016/j.crte.2005.11.009

    Article  Google Scholar 

  • Elgamal A, Yang Z, Parra E (2002) Computational modeling of cyclic mobility and post liquefaction site response. Soil Dyn Earthquake Eng 22:259–271. doi:10.1016/S0267-7261(02)00022-2

    Article  Google Scholar 

  • Finn WDL (1981) Liquefaction potential: developments since 1976. In: Prakash S (ed) Proceedings of the 1st international conference of recent advances in geotechnical earthquake engineering and soil dynamics; St Louis 2, University of Missouri-Rolla, pp 655–681

  • Gennesseaux M, Mauffret A, Pautot G (1980) Les glissements sous-marins de la pente continentale niçoise et la rupture des câbles en mer Ligure (Méditerranée occidentale). Comptes Rendus de l’Académie des Sciences Paris 290

  • Gracia E, Danobeitia JJ, PARSIFAL Team (2003) Mapping active faults offshore Portugal (36°N–38°N): implications for seismic hazard assessment along the southwest Iberian margin. Geology 31(1):83–86. doi:10.1130/0091-7613(2003)031<0083:MAFOPN>2.0.CO;2

    Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. doi:10.1029/95RG03287

    Article  Google Scholar 

  • Heezen BC, Ewing M (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. Am J Sci 250:849–873

    Google Scholar 

  • Hühnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362. doi:10.1016/j.margeo.2004.10.013

    Article  Google Scholar 

  • Idriss IM (1985) Evaluating seismic risk in engineering practice. In: 11th international conference of soil mechanics and foundation engineering, San Francisco, vol 1, pp 255–320

  • Ishihara K (1984) Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit. In: Proceedings of the international conference on case histories in geotechnical engineering. St Louis, Missouri, vol 3, pp 1129–1143

  • Ishihara K (1985) Stability of natural deposits during earthquakes. In: Proceedings of the 11th international conference of soil mechanics and foundation engineering, San Francisco, vol 1, pp 321–376

  • Ishihara K (1993) Liquefaction and flow failure during earthquake. The 33rd Rankin Lecture. Geotechnique 43(3):351–415

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New Jersey, 653 pp

  • Laouami N, Slimani A, Bouhadad Y, Nour A, Larbes S (2003) Analysis of strong ground motions recorded during the 21st May, 2003 Boumerdès, Algeria, Earthquake. CSEM Newsl 20:5–7

    Google Scholar 

  • Lastras G, Canals M, Amblas D, Ivanov M, Dennielou B, Droz L, Akhmetzhanov A, TTR-14 Leg 3 Shipboard Scientific Party (2006) Eivissa slides, western Mediterranean Sea: morphology and processes. Geo-Mar Lett 26:225–233. doi:10.1007/s00367-006-0032-4

    Google Scholar 

  • Liu AH, Stewart JP, Abrahamson NA, Moriwaki Y (2001) J Geotech Geoenviron Eng 127(12):1017–1026. doi:10.1061/(ASCE)1090-0241(2001)127:12(1017)

    Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. doi:10.1139/t01-089

    Article  Google Scholar 

  • Marcuson WF III (1978) Definition of terms related to liquefaction. J Geotech Eng Div 104(9):1197–1200

    Google Scholar 

  • McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136. doi:10.1016/S0025-3227(00)00050-5

    Article  Google Scholar 

  • Meghraoui M, Maouche S, Chemaa B, Cakyr Z, Aoudia A, Harbi A, Alasset PJ, Ayadi A, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the M w  = 6.8 Zemmouri (Algeria) earthquake of 21 May, 2003. Geophys Res Lett 31 (L19605). doi:10.1029/2004GL020466

  • Pestana JM, Nadim F (2000) Nonlinear site response analysis of submerged slopes. Technical Report UCB/GT/2000-04, Department of Civil and Environmental Engineering

  • Pestana JM, Biscontin G, Nadim F, Andersen K (2000) Modeling cyclic behavior of lightly overconsolidated clays in simple shear. Soil Dyn Earthquake Eng 19(7):501–519. doi:10.1016/S0267-7261(00)00032-4

    Article  Google Scholar 

  • Piper DJW, Shor AN, Farre JA, O’Connell S, Jacobi R (1985) Sediment slides around the epicentre of the 1929 Great Banks earthquake. Geology 13:538–541. doi:10.1130/0091-7613(1985)13<538:SSATCO>2.0.CO;2

    Google Scholar 

  • Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicenter of the 1929 Great Banks earthquake: initiation of debris flow and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97. doi:10.1046/j.1365-3091.1999.00204.x

    Article  Google Scholar 

  • Reimer PJ, Bard EMB, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP et al (2004) C14. Radiocarbon 46:1029–1058

    Google Scholar 

  • Robertson PK, Fear CE (1995) Liquefaction and sands and its evaluation. Keynote lecture. In: Ishihara K (ed) IS Tokyo ’95, Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, Amsterdam

  • Savoye B (2005) Maradja 2 cruise report, IFREMER

  • Seed HB (1979) Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J Geotech Eng Div 105(GT2):201–255

    Google Scholar 

  • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97(SM9):1249–1273

    Google Scholar 

  • Seed RB, Cetin KO, Moss RES, Kammerer AM, Wu J, Pestana JM, Riemer MF (2001) Recent advances in soil liquefaction engineering, and seismic site response evaluation. Paper. I.20; University of California, Berkeley, California

  • Semmane F, Campillo M, Cotton F (2005) Fault location and source process of the Boumerdès, Algeria, earthquake inferred from geodetic and strong motion data. Geophys Res Lett 32(L01305). doi:10.1029/2004GL021268

  • Sultan N (2004) PRISMA cruise report, IFREMER

  • Sultan N, Cochonat P, Cayocca F, Bourillet JF, Colliat JL (2004) Analysis of submarine slumping in the Gabon continental slope, In: High-Resolution Geophysical Studies of Continental Margins Geohazards. Special issue of AAPG Bulletin 88(6): 781–799

  • Sultan N, Gaudin M, Berné S, Canals M, Urgeles R, Lafuerza S (2007) Analysis of slope failures in submarine canyon heads: an example from the Gulf of Lions. J Geophys Res. doi:10.1029/2005JF000408

  • Yang Z, Lu J, Elgamal A (2004) A web-based platform for computer simulation of seismic ground response. Adv Eng Softw 35:249–259. doi:10.1016/j.advengsoft.2004.03.002

    Article  Google Scholar 

  • Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH II (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshop on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng (October):817–833. doi:10.1061/(ASCE)1090-0241(2001)127:10(817)

  • Yoshimi Y, Richart FE, Prakash S, Balkan DD, Ilyichev YL (1977) Soil dynamics and its application to foundation engineering. In: Proceedings of the 9th international conference of soil mechanics and foundation engineering, Tokyo, vol 2, pp 605–650

Download references

Acknowledgments

This work has been developed within the EURODOM European Project (contract RTN2-2001-00281). Financial support was provided by IFREMER and the Agence Nationale de Recherche (ISIS project). The support by officers and crew during MARADJA 2003, PRISMA (Marion Dufresne, IPEV) and MARADJA 2 cruises is greatly appreciated. The authors thank E. Gràcia, H. Lee and M. Canals for their comments and suggestions that significantly improved the paper. This paper is an homage to Bruno. His premature disappearance is an enormous loss for the marine geosciences but also for his family, friends, colleagues and students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Dan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, G., Sultan, N., Savoye, B. et al. Quantifying the role of sandy–silty sediments in generating slope failures during earthquakes: example from the Algerian margin. Int J Earth Sci (Geol Rundsch) 98, 769–789 (2009). https://doi.org/10.1007/s00531-008-0373-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0373-5

Keywords

Navigation