Abstract
The Algerian margin is a seismically active region, where during the last century, several large magnitude earthquakes took place. This study combines geotechnical and sedimentological data with numerical modelling to quantitatively assess the present-day slope stability of the Algerian margin. Geotechnical laboratory tests, such as cyclic triaxial tests, oedometric tests and vane shear tests were carried out on sediment cores collected on the study area. The liquefaction potential of a sediment column located about 30 km from the Boumerdès earthquake epicentre of 21st May 2003 was evaluated theoretically for an earthquake of M w = 6.8. We show that thin sand and silt beds such as those described on recovered sediment cores are the main cause of sediment deformation and liquefaction during earthquakes. Numerical calculations showed that the slope failure may occur during an earthquake characterised by a PGA in excess of 0.1g, and also that, under a PGA of 0.2g liquefaction could be triggered in shallow silty–sandy deposits. Moreover, comparison of the predicted slope failure with failure geometries inferred from seafloor morphology showed that earthquakes and subsequent mass movements could explain the present-day morphology of the study area.
Similar content being viewed by others
References
Arulmoli K, Muraleetharan KK, Hosain MM, Fruth LS (1992) VELACS Laboratory Testing Program, Soil Data Report, The Earth Technology Corporation, Irvine, California, Report to the National Science Foundation, Washington D.C., March, 77 pp
Baptista MA, Miranda PMA, Miranda JM, Mendes Victor L (1998) Constrains on the source of the 1755 Lisbon tsunami inferred from numerical modelling of historical data. J Geodyn 25(2):159–174. doi:10.1016/S0264-3707(97)00020-3
Biscontin G, Pestana JM (2006) Factors affecting seismic response of submarine slopes. Nat Hazards Earth Syst Sci 6:97–107
Booth JS, O’Leary DW, Popenoe P, Danforth WW (1993) U.S. Atlantic continental slope landslides: their distribution, general attributes, and implication. In: Schwab WC, Lee HJ, Twichell DC (eds) Submarine landslides: selected studies in the U.S. exclusive economic zone, U.S. Geological Survey Bulletin 2002, pp 14–22
Bounif A, Dorbath C, Ayadi A, Meghraoui M, Beldjoudi H, Laouami N, Frogneux M, Slimani A, Alasset PJ, Kharroubi A, Ousadou F, Chikh M, Harbi A, Larbes S, Maouche S (2004) The 21 May 2003 Zemmouri (Algeria) earthquake Mw 6.8: Relocation and aftershock sequence analysis. Geophys Res Lett 31 (L19606). doi:10.1029/2004GL020586
Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Langva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project. Mar Geol 213:9–72. doi:10.1016/j.margeo.2004.10.001
Chen Z, Wang X, Haberfield C, Yin J, Wang Y (2001) A three-dimensional slope stability analysis method using the upper bound theorem. Part I. Theory and methods. Int J Rock Mech Min Sci 38:369–378. doi:10.1016/S1365-1609(01)00012-0
Dan G (2007) Processus gravitaires et évaluation de la stabilité des pente: approche géologique et géotechnique. Application à la marge algérienne et à l’effondrement de l’aéroport de Nice en 1979, Ph-D Thesis, UBO, 2007, 365 pp
Das BM (1983) Advanced soil mechanics. Taylor and Francis, London, 425 pp
Déverchère J (2003) MARADJA cruise report, IUEM
Déverchère J, Yelles K, Domzig A, Mercier de Lépinay B, Bouillin JP, Gaullier V, Bracène R, Calais E, Savoye B, Kherroubi A, Le Roy P, Pauc H, Dan G (2005) Active thrust faulting offshore Boumerdès, Algeria, and its relations to the 2003 Mw 6.9 earthquake. Geophys Res Lett 32(L04311). doi:10.1029/2004GL021646
Domzig A, Yelles K, Le Roy C, Dévercère J, Bouillin JP, Bracène R, Mercier de Lépinay B, Le Roy P, Calais E, Kherroubi A, Gaullier V, Savoye B, Pauc H (2006) Searching for the Africa-Eurasia Moiocene boundary offshore western Algeria (MARADJA ’03 cruise). C R Geosci 338:80–91. doi:10.1016/j.crte.2005.11.009
Elgamal A, Yang Z, Parra E (2002) Computational modeling of cyclic mobility and post liquefaction site response. Soil Dyn Earthquake Eng 22:259–271. doi:10.1016/S0267-7261(02)00022-2
Finn WDL (1981) Liquefaction potential: developments since 1976. In: Prakash S (ed) Proceedings of the 1st international conference of recent advances in geotechnical earthquake engineering and soil dynamics; St Louis 2, University of Missouri-Rolla, pp 655–681
Gennesseaux M, Mauffret A, Pautot G (1980) Les glissements sous-marins de la pente continentale niçoise et la rupture des câbles en mer Ligure (Méditerranée occidentale). Comptes Rendus de l’Académie des Sciences Paris 290
Gracia E, Danobeitia JJ, PARSIFAL Team (2003) Mapping active faults offshore Portugal (36°N–38°N): implications for seismic hazard assessment along the southwest Iberian margin. Geology 31(1):83–86. doi:10.1130/0091-7613(2003)031<0083:MAFOPN>2.0.CO;2
Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. doi:10.1029/95RG03287
Heezen BC, Ewing M (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. Am J Sci 250:849–873
Hühnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362. doi:10.1016/j.margeo.2004.10.013
Idriss IM (1985) Evaluating seismic risk in engineering practice. In: 11th international conference of soil mechanics and foundation engineering, San Francisco, vol 1, pp 255–320
Ishihara K (1984) Post-earthquake failure of a tailings dam due to liquefaction of the pond deposit. In: Proceedings of the international conference on case histories in geotechnical engineering. St Louis, Missouri, vol 3, pp 1129–1143
Ishihara K (1985) Stability of natural deposits during earthquakes. In: Proceedings of the 11th international conference of soil mechanics and foundation engineering, San Francisco, vol 1, pp 321–376
Ishihara K (1993) Liquefaction and flow failure during earthquake. The 33rd Rankin Lecture. Geotechnique 43(3):351–415
Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall, New Jersey, 653 pp
Laouami N, Slimani A, Bouhadad Y, Nour A, Larbes S (2003) Analysis of strong ground motions recorded during the 21st May, 2003 Boumerdès, Algeria, Earthquake. CSEM Newsl 20:5–7
Lastras G, Canals M, Amblas D, Ivanov M, Dennielou B, Droz L, Akhmetzhanov A, TTR-14 Leg 3 Shipboard Scientific Party (2006) Eivissa slides, western Mediterranean Sea: morphology and processes. Geo-Mar Lett 26:225–233. doi:10.1007/s00367-006-0032-4
Liu AH, Stewart JP, Abrahamson NA, Moriwaki Y (2001) J Geotech Geoenviron Eng 127(12):1017–1026. doi:10.1061/(ASCE)1090-0241(2001)127:12(1017)
Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. doi:10.1139/t01-089
Marcuson WF III (1978) Definition of terms related to liquefaction. J Geotech Eng Div 104(9):1197–1200
McAdoo BG, Pratson LF, Orange DL (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136. doi:10.1016/S0025-3227(00)00050-5
Meghraoui M, Maouche S, Chemaa B, Cakyr Z, Aoudia A, Harbi A, Alasset PJ, Ayadi A, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the M w = 6.8 Zemmouri (Algeria) earthquake of 21 May, 2003. Geophys Res Lett 31 (L19605). doi:10.1029/2004GL020466
Pestana JM, Nadim F (2000) Nonlinear site response analysis of submerged slopes. Technical Report UCB/GT/2000-04, Department of Civil and Environmental Engineering
Pestana JM, Biscontin G, Nadim F, Andersen K (2000) Modeling cyclic behavior of lightly overconsolidated clays in simple shear. Soil Dyn Earthquake Eng 19(7):501–519. doi:10.1016/S0267-7261(00)00032-4
Piper DJW, Shor AN, Farre JA, O’Connell S, Jacobi R (1985) Sediment slides around the epicentre of the 1929 Great Banks earthquake. Geology 13:538–541. doi:10.1130/0091-7613(1985)13<538:SSATCO>2.0.CO;2
Piper DJW, Cochonat P, Morrison ML (1999) The sequence of events around the epicenter of the 1929 Great Banks earthquake: initiation of debris flow and turbidity current inferred from sidescan sonar. Sedimentology 46:79–97. doi:10.1046/j.1365-3091.1999.00204.x
Reimer PJ, Bard EMB, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP et al (2004) C14. Radiocarbon 46:1029–1058
Robertson PK, Fear CE (1995) Liquefaction and sands and its evaluation. Keynote lecture. In: Ishihara K (ed) IS Tokyo ’95, Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, Amsterdam
Savoye B (2005) Maradja 2 cruise report, IFREMER
Seed HB (1979) Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J Geotech Eng Div 105(GT2):201–255
Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97(SM9):1249–1273
Seed RB, Cetin KO, Moss RES, Kammerer AM, Wu J, Pestana JM, Riemer MF (2001) Recent advances in soil liquefaction engineering, and seismic site response evaluation. Paper. I.20; University of California, Berkeley, California
Semmane F, Campillo M, Cotton F (2005) Fault location and source process of the Boumerdès, Algeria, earthquake inferred from geodetic and strong motion data. Geophys Res Lett 32(L01305). doi:10.1029/2004GL021268
Sultan N (2004) PRISMA cruise report, IFREMER
Sultan N, Cochonat P, Cayocca F, Bourillet JF, Colliat JL (2004) Analysis of submarine slumping in the Gabon continental slope, In: High-Resolution Geophysical Studies of Continental Margins Geohazards. Special issue of AAPG Bulletin 88(6): 781–799
Sultan N, Gaudin M, Berné S, Canals M, Urgeles R, Lafuerza S (2007) Analysis of slope failures in submarine canyon heads: an example from the Gulf of Lions. J Geophys Res. doi:10.1029/2005JF000408
Yang Z, Lu J, Elgamal A (2004) A web-based platform for computer simulation of seismic ground response. Adv Eng Softw 35:249–259. doi:10.1016/j.advengsoft.2004.03.002
Youd TL, Idriss IM, Andrus RD, Arango I, Castro G, Christian JT, Dobry R, Finn WDL, Harder LF, Hynes ME, Ishihara K, Koester JP, Liao SSC, Marcuson WF III, Martin GR, Mitchell JK, Moriwaki Y, Power MS, Robertson PK, Seed RB, Stokoe KH II (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshop on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng (October):817–833. doi:10.1061/(ASCE)1090-0241(2001)127:10(817)
Yoshimi Y, Richart FE, Prakash S, Balkan DD, Ilyichev YL (1977) Soil dynamics and its application to foundation engineering. In: Proceedings of the 9th international conference of soil mechanics and foundation engineering, Tokyo, vol 2, pp 605–650
Acknowledgments
This work has been developed within the EURODOM European Project (contract RTN2-2001-00281). Financial support was provided by IFREMER and the Agence Nationale de Recherche (ISIS project). The support by officers and crew during MARADJA 2003, PRISMA (Marion Dufresne, IPEV) and MARADJA 2 cruises is greatly appreciated. The authors thank E. Gràcia, H. Lee and M. Canals for their comments and suggestions that significantly improved the paper. This paper is an homage to Bruno. His premature disappearance is an enormous loss for the marine geosciences but also for his family, friends, colleagues and students.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dan, G., Sultan, N., Savoye, B. et al. Quantifying the role of sandy–silty sediments in generating slope failures during earthquakes: example from the Algerian margin. Int J Earth Sci (Geol Rundsch) 98, 769–789 (2009). https://doi.org/10.1007/s00531-008-0373-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-008-0373-5