Skip to main content
Log in

Cold-water coral banks and submarine landslides: a review

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrams MA (1992) Geophysical and geochemical evidence for subsurface hydrocarbon leakage in the Bering Sea, Alaska. Mar Petrol Geol Bull 9:208–221

    Article  Google Scholar 

  • Antobreh A, Krastel S (2006) Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: a newly discovered canyon preserved-off a major arid climatic region. Mar Petrol Geol 23:37–59

    Article  Google Scholar 

  • Antobreh A, Krastel S (2007) Mauritania Slide Complex: morphology, seismic characterisation and processes of formation. Int J Earth Sci (Geol Rundsch) 96:451–472

    Article  Google Scholar 

  • Bailey W, Shannon PM, Walsh JJ, Unnithan V (2003) Distributions of faults and deep sea carbonate mounds in the Porcupine Basin, offshore Ireland. Mar Petrol Geol 20:509–522

    Article  Google Scholar 

  • Bondevik S, Lovholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga Slide tsunami: comparing field observations with numerical simulations. Mar Petrol Geol 22:195–208

    Article  Google Scholar 

  • Bouriak S, Vanneste M, Saoutkine A (2000) Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway. Mar Geol 163:125–148

    Article  Google Scholar 

  • Brown A (2000) Evaluation of possible gas microseepage mechanisms. AAPG Bull 84:1775–1789

    Google Scholar 

  • Bugge T, Befring S, Belderson RH, Eidvin T, Jansen E, Kenyon NH, Holtedahl H, Sejrup HP (1987) A giant three-stage submarine slide off Norway. Geo Mar Lett 7:191–198

    Article  Google Scholar 

  • Bünz S, Mienert J, Berndt C (2003) Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planet Sci Lett 209:291–307

    Article  Google Scholar 

  • Bunz S, Mienert J, Bryn P, Berg K (2005) Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide. Basin Res 17:109–122

    Article  Google Scholar 

  • Canals M, Lastras G, Urgeles R, Casamor JL, Mienert J, Cattaneo A, De Batist M, Haflidason H, Imbo Y, Laberg JS, Locat J, Long D, Longva O, Masson DG, Sultan N, Trincardi F, Bryn P (2004) Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies form the COSTA project. Mar Geol 213:9–72

    Article  Google Scholar 

  • Cartwright JA, Lonergan L (1996) Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems. Basin Res 8:183–193

    Article  Google Scholar 

  • Colman JG, Gordon DM, Lane AP, Forde MJ, Fitzpatrick JJ (2005) Carbonate mounds off Mauritania, Northwest Africa: status of deep-water corals and implications for management of fishing and oil exploration activities. In: Freiwald A, Roberts M (eds) Cold-water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg, pp 417–441

    Chapter  Google Scholar 

  • De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet J-P (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231

    Article  Google Scholar 

  • De Mol B, Henriet J-P, Canals M (2005) Development of coral banks in Porcupine Seabight: do they have Mediterranean ancestors? In: Freiwald A, Roberts M (eds) Cold-water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg, pp 515–533

    Chapter  Google Scholar 

  • De Mol B, Kozachenko M, Wheeler A, Alvares H, Jean-Pierre H, Olu-Le Roy K (2007) Thérèse Mound: a case study of coral bank development in the Belgica Mound Province, Porcupine Seabight. Int J Earth Sci (Geol Rundsch) 96:103–120

    Article  Google Scholar 

  • Evans D, Harrison Z, Shannon PM, Laberg JS, Nielsen T, Ayers S, Holmes R, Hoult RJ, Lindberg B, Haflidason H, Long D, Kuijpers A, Andersen ES, Bryn P (2005) Palaeoslides and other mass failures of Pliocene to Pleistocene age along the Atlantic continental margin of NW Europe. Mar Petrol Geol 22:1131–1148

    Article  Google Scholar 

  • Expedition Scientists (2005) Modern carbonate mounds: Porcupine drilling. IODP Prel. Rept., 307. doi:10.2204/iodp.pr.307.2005

  • Fabricius KE, Wild C, Wolanski E, Abele D (2003) Effects of transparent exopolymer particles and muddy terrrigenous sediments on the survival of hard coral recruits. Estuar Coast Mar Sci 57:613–621

    Google Scholar 

  • Ferdelman TG, Kano A, Williams T, Henriet J-P, the IODP Expedition 307 Scientists (2006) Modern carbonate mounds: porcupine drilling. In: Proceedings of the integrated ocean drilling program, vol 307. Integrated Ocean Drilling Program Management International, Inc., College Station. doi:10.2204/iodp.proc.307.2006

  • Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia 471:1–12

    Article  Google Scholar 

  • Fosså JH, Lindberg B, Christensen O, Lundälv T, Svellingen I, Mortensen PB, Alvsvåg J (2005) Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg, pp 359–391

  • Frederiksen R, Jensen A, Westerberg H (1992) The distribution of the scleractinian coral Lophelia Pertusa around the Faeroe Islands and the relation to internal tidal mixing. Sarsia 77:157–167

    Google Scholar 

  • Freiwald A, Wilson JB, Henrich R (1999) Grounding Pleistocene icebergs shape recent deep-water coral reefs. Sed Geol 125:1–8

    Article  Google Scholar 

  • Freiwald A, Hühnerbach V, Lindberg B, Wilson J, Campbell J (2002) The Sula Reef Complex, Norwegian Shelf. Facies 47:179–200

    Article  Google Scholar 

  • Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water Coral Reefs. UNEP-WCMC, Cambridge

    Google Scholar 

  • Frenz M, Wynn RB, Georgiopoulou A, Bender VB, Hough G, Masson DG, Talling PJ, Cronin BT (2008) Provenance and pathways of late Quaternary turbidites in the deep-water Agadir Basin, northwest African margin. Int J Earth Sci. doi 10.1007/s00531-008-0313-4

  • Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson D (2004) The Storegga Slide: architecture, geometry and slide development. Mar Geol 213:201–234

    Article  Google Scholar 

  • Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga Slide. Mar Petrol Geol 22:123–136

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59

    Article  Google Scholar 

  • Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unnithan V, Bouriak S, Chachkine P, The Porcupine-Belgica 97 Shipboard Party (1998) Gas hydrate crystals may help build reefs. Nature 391:648–649

    Article  Google Scholar 

  • Henriet J-P, De Mol B, Vanneste M, Huvenne V, Van Rooij D, The “Porcupine-Belgica” 97, 98 and 99 shipboard parties (2001) Carbonate mounds and slope failures in the Porcupine Basin: a development model involving past fluid venting. In: Shannon PM, Haughton P, Corcoran D (eds) Petroleum exploration of Irelands’s offshore basins. Special Publication Geological Society of London, London, 188:375–383

  • Henriet J-P, Guidard S, The ODP “Proposal 573” Team (2002) Carbonate mounds as a possible example for microbial activity. In: Wefer G et al (eds) Ocean margin systems. Springer, Heidelberg, pp 439–455

    Google Scholar 

  • Hovland M (2008) Deep-water coral reefs: unique biodiversity hotspots. Praxis Publishing (Springer), Chichester, pp 278

  • Hovland M, Mortensen PB (1999) Norske korallrev og prosesser i havbunnen. John Grieg Forlag, Bergen, p 155

    Google Scholar 

  • Hovland M, Risk M (2003) Do Norwegian deep-water coral reefs rely on seeping fluids? Mar Geol 198:83–96

    Article  Google Scholar 

  • Hovland M, Thomsen E (1997) Cold-water corals: are they hydrocarbon seep related? Mar Geol 137:159–164

    Article  Google Scholar 

  • Hovland M, Croker PF, Martin M (1994) Fault-associated Seabed Mounds (Carbonate Knolls?) off Western Ireland and North-west Australia. Mar Petrol Geol 11:232–246

    Article  Google Scholar 

  • Hovland M, Mortensen PB, Brattegard T, Strass P, Rokengen K (1998) Ahermatypic coral banks off mid-Norway; evidence for a link with seepage of light hydrocarbons. Palaios 13:189–200

    Article  Google Scholar 

  • Hovland M, Gardner JV, Judd AG (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2:127–136

    Article  Google Scholar 

  • Huhnerbach V, Masson DG (2004) Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Mar Geol 213:343–362

    Article  Google Scholar 

  • Huvenne VAI, Croker PF, Henriet J-P (2002) A refreshing 3D view of an ancient sediment collapse and slope failure. Terra Nova 14:33–40

    Article  Google Scholar 

  • Huvenne VAI, De Mol B, Henriet J-P (2003) A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland. Mar Geol 198:5–25

    Article  Google Scholar 

  • Huvenne V, Bailey W, Shannon P, Naeth J, di Primio R, Henriet J, Horsfield B, de Haas H, Wheeler A, Olu-Le Roy K (2007) The Magellan mound province in the Porcupine Basin. Int J Earth Sci (Geol Rundsch) 96:85–101

    Article  Google Scholar 

  • Jensen S, Neufeld JD, Birkeland N–K, Hovland M, Murrell JC (2008) Insight into the microbial community structure of a deepwater coral reef environment. Deep-Sea Research I (DSR1-D0800050R1)

  • Kenyon N, Akhmetzhanov AM, Wheeler AJ, van Weering TCE, de Haas H, Ivanov MK (2003) Giant carbonate mud mound in the Southern Rockall Trough. Mar Geol 195:5–30

    Article  Google Scholar 

  • Laberg JS, Vorren TO, Dowdeswell JA, Kenyon NH, Taylor J (2000) The Andøya Slide and the Andøya Canyon, north-eastern Norwegian-Greenland Sea. Mar Geol 162:259–275

    Article  Google Scholar 

  • Laberg JS, Vorren TO, Mienert J, Evans D, Lindberg B, Ottesen D, Kenyon NH, Henriksen S (2002) Late Quaternary palaeoenvironment and chronology in the Traenadjupet Slide area offshore Norway. Mar Geol 188:35–60

    Article  Google Scholar 

  • Lastras G, Canals M, Urgeles R, Hughes-Clarke J-E, Acosta J (2004) Shallow slides and pockmark swarms in the Eivissa Channel, western Mediterranean Sea. Sedimentology 51:1–14

    Article  Google Scholar 

  • Lee H, Locat J, Dartnell P, Israel K, Wong F (1999) Regional variability of slope stability: application to the Eel margin, California. Mar Geol 154:305–321

    Article  Google Scholar 

  • Lindberg B, Mienert J (2005) Sedimentological ad geochemical environment of the Fugly Reef off northern Norway. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer-Verlag, Heidelberg, pp 633–650

    Chapter  Google Scholar 

  • Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15-ka ago and the history of landslides in the Canary Islands. Geology 24:231–234

    Article  Google Scholar 

  • Masson DG, Bett BJ, Billett DSM, Jacobs CL, Wheeler AJ, Wynn RB (2003) The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic. Mar Geol 194:159–180

    Article  Google Scholar 

  • Mienert J, Weaver PPE (eds) (2003) European margin sediment dynamics, side-scan sonar and seismic images. Springer-Verlag, Berlin, pp 309

  • Mienis F, van Weering T, de Haas H, de Stigter H, Huvenne V, Wheeler A (2006) Carbonate mound development at the SW Rockall Trough margin based on high resolution TOBI and seismic recording. Mar Geol 233(1–4):1–19

    Article  Google Scholar 

  • Mienis F, de Stigter HC, White M, Duineveld G, de Haas H, van Weering TCE (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 54:1655–1674

  • Mortensen PB (2000) Lophelia pertusa (Scleractinia) in Norwegian waters. Distribution, growth and associated fauna. Dissertation, University of Bergen, Bergen

  • Mortensen PB (2001) Aquarium observations on the deep-water coral Lophelia pertusa (L., 1758) (Scleractinia) and selected associated invertebrates. Ophelia 54:84–104

    Google Scholar 

  • Mortensen PB, Hovland M, Brattegard T, Farestveit R (1995) Deep water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64 N on the Norwegian Shelf: Structure and associated megafauna. Sarsia, pp 145–158

  • Orange DL, Greene HG, Reed D, Martin JB, McHugh CM, Ryan WBF, Maher N, Stakes D, Barry J (1999) Widespread fluid expulsion on a translational continental margin: mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. GSA Bull 111:992–1009

    Article  Google Scholar 

  • Parsons BS, Vogt PR, Haflidason H, Jung WY (2005) Sidescan and video exploration of the Storegga slide headwall region by submarine NR-1. Mar Geol 219:195–205

    Article  Google Scholar 

  • Roberts JM (2000) Coral colonies make a home on North Sea oil rigs. Reef Encount 27:17–18

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  Google Scholar 

  • Schroeder WW, Brooke SD, Olson JB, Phaneuf B, McDonough JJ, Etnoyer P (2005) Occurrence of deep-water Lophelia pertusa and Madrepora oculata in the Gulf of Mexico. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin, pp 297–307

    Chapter  Google Scholar 

  • Talling PJ, Wynn RB, Masson DG, Frenz M, Cronin BT, Schiebel R, Akhmetzhanov AM, Dallmeier-Tiessen S, Benetti S, Weaver PPE, Georgiopoulou A, Zühlsdorff C, Amy LA (2007) Onset of submarine debris flow deposition far from original giant landslide. Nature 450:541–544

    Article  Google Scholar 

  • Thiem Ø, Ravagnan E, Fosså JH, Berntsen J (2006) Food supply mechanisms for cold-water corals along a continental shelf edge. J Mar Syst 60:207–219

    Article  Google Scholar 

  • Van Rooij D, De Mol B, Huvenne V, Ivanov M, Henriet J-P (2003) Seismic evidence of current-controlled sedimentation in the Belgica Mound province, southwest of Ireland. Mar Geol 195(1–4):31–53

    Article  Google Scholar 

  • van Weering TCE, de Haas H, De Stigter HC, Lykke-Andersen H, Kouvaev I (2003) Structure and development of giant carbonate mounds at the SW and SE Rockall Trough margins, NE Atlantic Ocean. Mar Geol 198:67–81

    Article  Google Scholar 

  • Veron JEN (1995) Corals in space and time. UNSW Press, Sydney, p 321

    Google Scholar 

  • Weaver PPE, Wynn RB, Kenyon NH, Evans J (2000) Continental margin sedimentation, with special reference to the north-east Atlantic margin. Sedimentology 47(s1):239–256

    Article  Google Scholar 

  • White M (2003) Comparison of near seabed currents at two locations in the Porcupine Sea Bight: implications for benthic fauna. J Mar Biol Assoc UK 83:683–686

    Article  Google Scholar 

  • White M (2007) Benthic dynamics at the carbonate mound regions of the Porcupine Sea Bight continental margin. Int J Earth Sci (Geol Rundsch) 96(1):1–9

    Article  Google Scholar 

  • Wilson JB (1979) “Patch” development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Assoc UK 59:165–177

    Article  Google Scholar 

  • Wynn RB, Masson DG, Stow DAV, Weaver PPE (2000) The Northwest African slope apron: a modern analogue for deep-water systems with complex seafloor topography. Mar Petrol Geol 17:253–265

    Article  Google Scholar 

Download references

Acknowledgments

This study was originated in the framework of the EC FP5 RTN EURODOM and EC FP6 HERMES (contract GOCE-CT-2005-511234-1). GRC Geociències Marines (GRCGM) is funded by ‘‘Generalitat de Catalunya’’ excellence research grants program (ref. 2005 SGR-00152). GRCGM also acknowledges the support received from Landmark Graphics Corporation via the Landmark University Grant Program, and from SMT Inc. via the educational User License for Kingdom Suite interpretation software. The authors like to thank the reviewers, Martin Hovland and André Freiwald for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben De Mol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Mol, B., Huvenne, V. & Canals, M. Cold-water coral banks and submarine landslides: a review. Int J Earth Sci (Geol Rundsch) 98, 885–899 (2009). https://doi.org/10.1007/s00531-008-0372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0372-6

Keywords

Navigation