Skip to main content

Advertisement

Log in

Relationships between landscape morphology, climate and surface erosion in northern Peru at 5°S latitude

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The northern segment of the Peruvian Andes is affected by a twofold climate with measurable implications on landscapes and landscape dynamics. During ‘normal’ or ‘neutral’ years easterly winds bring rain from the Atlantic and the Amazon Basin to the Sierras, which results in a seasonal climate with rather low-intensity precipitations. In contrast, during the large-scale warm phase of the ENSO cycle, El Niños transfer moisture from the Pacific to the Peruvian coast by westerly winds and result in high-intensity precipitation. We investigate the effects of this twofold climate for the case of the Piura drainage basin at ca. 5°S latitude (northern Peru). In the headwaters that have been under the influence of the easterlies, the landscape is mantled by a thick regolith cover and dissected by a network of debris flow channels that are mostly covered by a thick layer of unconsolidated sediment. This implies that in the headwaters of the Piura River sediment discharge has been limited by the transport capacity of the sediment transfer system. In the lower segment that has been affected by high-intensity rainfall in relation to the westerlies (El Niños), the hillslopes are dissected by debris flow channels that expose the bedrock on the channel floor, implying a supply-limited sediment discharge. Interestingly, measurements at the Piura gauging station near the coast reveal that, during the last decades, sediment was transferred to the lower reaches only in response to the 1982–1983 and 1997–1998 El Niño periods. For the latter period, synthetic aperture radar (SAR) intensity images show that the locations of substantial erosion are mainly located in areas that were affected by higher-than-average precipitation rates. Most important, these locations are coupled with the network of debris flow channels. This implies that the seasonal easterlies are responsible for the production of sediment through weathering in the headwaters, and the highly episodic El Niños result in export of sediment through channelized sediment transport down to the coastal segment. Both systems overlap showing a partially coupled sediment production–delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albertz J (2007) Einführung in die Fernerkundung, Grundlagen der Interpretation von Luft- und Satellutenbildern, 3rd edn. Wissenschaftliche Buchgesellschaft, pp 264

  • Barry RG, Chorley RJ (1998) Atmosphere, weather and climate. Routledge, London, p 536

    Google Scholar 

  • Birot P (1968) The cycle of erosion in different climates. B. T. Batsford Ltd, London, p 144

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172. doi :10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

    Article  Google Scholar 

  • Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowsett HJ, Bybell LM et al (1992) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828. doi :10.1130/0016-7606(1992)104<0814:COTIOP>2.3.CO;2

    Article  Google Scholar 

  • Cobbing EJ, Pitcher WS, Wilson JJ, Baldock JW, Taylor WP, McCourt WJ et al (1981) The Geology of the Western Cordillera of Northern Perú: London. Overseas Mem Inst Geol Sci 5:144

    Google Scholar 

  • Crosetto M, Crippa B, Biescas E, Monserrat O, Agudo M, Fernandez P (2005) Land deformation measurement using SAR interferometry: state-of-the-art. Photogramm Fernerkundung Geoinf 6:497–510

    Google Scholar 

  • Curry JA, Webster PJ (1999) Thermodynamics of atmospheres and oceans. Academic Press, London, p 471

    Google Scholar 

  • Fruneau G, Achache J, Delacourt C (1996) Observation and modelling of the Saint-Etienne-De-Tinée landslide using SAR interferometry. Tectonophysics 265:181–190. doi:10.1016/S0040-1951(96)00047-9

    Article  Google Scholar 

  • Garreaud RD, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789. doi :10.1175/1520-0442(2001)014<2779:IRVOTS>2.0.CO;2

    Article  Google Scholar 

  • Goldberg RA, Tisnado M, Scofield RA (1987) Characteristics of extreme rainfall events in northwestern Peru during the 1982–1983 El Niño period. J Geophys Res 92:14225–14241. doi:10.1029/JC092iC13p14225

    Article  Google Scholar 

  • Grimm AM, Vera CS, Mechoso CR (2005) The South American monsoon system. In: Chang C-P, Wang B, Lau GNC (eds) The global monsoon system research and forecast. World Meteorology Organization TD-1266, Geneva, pp 219–238

  • Henderson F, Lewis A (eds) (1998) Principles and applications of imaging radar. Wiley, New York, p 866

    Google Scholar 

  • Horel JD, Cornejo-Garrido AG (1986) Convection along the Coast of Northern Peru during 1983: spatial and temporal variation of clouds and rainfall. Am Meteorol Soc 114:2091–2105

    Google Scholar 

  • Hovius N, Stark CP, Tutton MA, Abbott LD (1998) Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea. Geology 26:1071–1074. doi :10.1130/0091-7613(1998)026<1071:LDDNEI>2.3.CO;2

    Article  Google Scholar 

  • Huber M, Caballero R (2003) Eocene El Niño: evidence for robust tropical dynamics in the “Hothouse”. Science 299:877–881. doi:10.1126/science.1078766

    Article  Google Scholar 

  • Jaillard E, Hérail G, Monfret T, Díaz-Martínez E, Baby P, Lavenu A, et al (2000) Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. In: Cordani UJ, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America: Rio de Janeiro. 31st International Geological Congress, pp 481–559

  • Kirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG et al (2001) Mountain erosion over time10 y, 10 k.y., and 10 m.y. scales. Geology 29:591–594. doi :10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2

    Article  Google Scholar 

  • Kober F, Ivy-Ochs S, Schlunegger F, Baur H, Kubik PW, Wieler R (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: multiple cosmogenic nuclide data and sediment yields budgets. Geomorphology 83:97–120. doi:10.1016/j.geomorph.2006.06.029

    Article  Google Scholar 

  • Lillesand T, Kiefer R (2003) Remote sensing and image interpretation, 5th edn. Wiley, New York, p 763

    Google Scholar 

  • Molnar P, Anderson R, Kier SG, Rose J (2006) Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J Geophys Res 111:F02001. doi:10.1029/2005JF000310

  • Oliver C, Quegan S (2004) Understanding synthetic aperture radar images. SciTech Publishing Inc, Raleigh, p 479

    Google Scholar 

  • Ormsby J, Blanchard B, Blanchard A (1985) Detection of lowland flooding using active microwave systems. Photogramm Eng Remote Sens 51:317–328

    Google Scholar 

  • Philander SGH (1983) El Niño southern oscillation phenomena. Nature 302:295–301. doi:10.1038/302295a0

    Article  Google Scholar 

  • Pilger RH (1981) Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geol Soc Am Bull 92:448–456. doi 10.1130/0016-7606(1981)92<448:PRARAL>2.0.CO;2

    Article  Google Scholar 

  • Ramos VA, Aleman A (2000) Tectonic evolution of South America. In: Cordani UJ, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America: Rio de Janeiro. 31st International Geological Congress, pp 635–685

  • Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267. doi:10.1038/nature02567

    Article  Google Scholar 

  • Reiners PW, Ehlers TA, Mitchell SG, Montgomery DR (2003) Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 426:645–647. doi:10.1038/nature02111

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1995) A high-resolution global sea surface temperature climatology. J Clim 8:1571–1583. doi 10.1175/1520-0442(1995)008<1571:AHRGSS>2.0.CO;2

    Article  Google Scholar 

  • Schneider H, Schwab M, Schlunegger F (2008) Channelized and hillslope sediment transport and the geomorphology of mountain belts. Int J Earth Sci 97:179–192. doi:10.1007/s00531-006-0164-9

    Article  Google Scholar 

  • Smith LC (2002) Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Ann Assoc Am Geogr 92:385–389. doi:10.1111/1467-8306.00295

    Article  Google Scholar 

  • Strasser M, Schlunegger F (2005) Erosional processes, topographic length-scales and geomorphic evolution in arid climatic environments: the ‘Lluta collapse’, northern Chile. Int J Earth Sci 94:433–446. doi:10.1007/s00531-005-0491-2

    Article  Google Scholar 

  • Toggweiler JR, Dixon K, Broecker WS (1991) The Peru upwelling and the ventilation of the South Pacific thermocline. J Geophys Res 96:20467–20497. doi:10.1029/91JC02063

    Article  Google Scholar 

  • Ulaby FT, Moore KM, Fung KM (1986) Microwave remote sensing, active and passive. vol 1–3, Norwood

  • von Blanckenburg F (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 237:462–479. doi:10.1016/j.epsl.2005.06.030

    Article  Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Niño-like conditions during the Pliocene Warm Period. Science 309:758–761. doi:10.1126/science.1112596

    Article  Google Scholar 

  • Wipf M, Zeilinger G, Seward D, Schlunegger F (2008) Focused subaerial erosion during ridge subduction: impact on the geomorphology in south-central Peru. Terra Nova 20:1–10

    Google Scholar 

  • Woodman R (1998) El Fenomeno El Niño y el Clima en el Peru. In: El Perú en los Albores del Siglo XXI/2 (Ciclo de Conferencias 1997–1998). Ediciones del Congreso del Perú, Lima, Peru, pp 201–242

  • Zebker HP, Rosen A, Goldstein RM, Gabriel A, Werner CL (1994) On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J Geophys Res 99:19617–19634. doi:10.1029/94JB01179

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Swiss National Science Foundation (grant No. 200021-100220/1). We acknowledge the very constructive reviews by G. Zeilinger and D. Petley. N. Ordinola and R. Rodriguez of the Universidad de Piura, Perú, kindly provided the precipitation data as well as the results of the water and sediment load measurements of the Piura River.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schlunegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mettier, R., Schlunegger, F., Schneider, H. et al. Relationships between landscape morphology, climate and surface erosion in northern Peru at 5°S latitude. Int J Earth Sci (Geol Rundsch) 98, 2009–2022 (2009). https://doi.org/10.1007/s00531-008-0355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0355-7

Keywords

Navigation