Skip to main content
Log in

Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African subduction

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Amphibolites and orthogneisses from the Taita Hills-Galana River area (SE Kenya) indicate their broad geological-tectonic setting. There are groups of subduction-related rocks which show characteristic REE (rare earth element) patterns and enrichment or varying concentrations of HFS (high field strength) elements. The groups can be assigned to tectonostratigraphic domains marked by different structural styles (e.g., thrust- or strike slip dominated). Tholeiitic gneisses, often emerging as folded and isolated (ridge-shaped) leucocratic bodies, belong to a group of rocks located between the thrust- and strike-slip domain. Compared to calc-alkaline gneisses of the area they contain more mafic inclusions and have lower LIL (large ionic lithophile), HFS and light REE values. These gneisses have chemical characteristics of M-type granitoids of oceanic island arc signature. Intrusion ages of ~955–845 Ma determined for these rocks suggest early Pan-African subduction. Mafic to ultramafic rocks from the Pare mountains of NE Tanzania show evidence of ophiolitic cumulates, subduction settings were also observed for the granulite areas in central and southern Tanzania. Together with the widespread arc settings documented in the Arabian–Nubian Shield, the presented data supports the continuation of an island-continental arc range across Kenya–Tanzania to Mozambique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelsalam M, Stern RJ (1996) Sutures and shear zones in the Arabian–Nubian Shield. J Afr Earth Sci 23:289–310. doi:10.1016/S0899-5362(97)00003-1

    Article  Google Scholar 

  • Appel P, Möller A, Schenk V (1998) High-pressure granulite facies metamorphism in the Pan-African Belt of eastern Tanzania: P-T-t evidence against granulite formation by continent collision. J Metamorph Geol 16:491–509. doi:10.1111/j.1525-1314.1998.00150.x

    Article  Google Scholar 

  • Appel P (1996) Hochdruckgranulite und Eklogite im Mozambique Belt von Tansania: eine geochemische und petrologische Studie. Dissertation, Christian-Abrechts-Universität Kiel, Deutschland

  • Ayalew T, Peccerillo A (1998) Petrology and geochemistry of the Gore-Gambella plutonic rocks; implications for magma genesis and the tectonic setting of the Pan-African orogenic belt of western Ethiopia. J Afr Earth Sci 27:397–416. doi:10.1016/S0899-5362(98)00070-0

    Article  Google Scholar 

  • Bagnall PS (1960) The geology of the north Pare Mountains. Rec Geol Surv Tanganyika 10:7–16

    Google Scholar 

  • Bagnall PS, Dundas D, Hartley E (1963) Geological map of the Usambara Mountains (Lushoto), scale 1:125,000. Geological Survey Divison, Dodoma, Tanganyika

  • Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, pp 236–281

    Google Scholar 

  • Batchelor RA, Bowden P (1985) Petrological interpretation of granitoid rock series using multicationic parameters. Chem Geol 48:43–55. doi:10.1016/0009-2541(85)90034-8

    Article  Google Scholar 

  • Bauernhofer AH (2003) Tectonic setting of early- to late Pan-African structures from the Mozambique Belt in SE Kenya and NE Tanzania. PhD Thesis, Karl-Franzens-Universität Graz, Austria

  • Berhe SM (1990) Ophiolites in northeast and east Africa: implications for Pan-African crustal growth. J Geol Soc Lond 147:41–57. doi:10.1144/gsjgs.147.1.0041

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of rare earth elements; meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Coleman RG (1977) Ophiolites; ancient oceanic lithosphere?. Springer, Berlin, pp 1–229

    Google Scholar 

  • Condie KC, Cox J, O’Reilly SY, Griffin WL, Kerrich R (2004) Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the southwestern United States: the role of grain-boundary phases. Geochim Cosmochim Acta 68:3919–3942. doi:10.1016/j.gca.2004.03.025

    Article  Google Scholar 

  • Coolen JJMMM, Priem HMA, Verdurmen EAT, Verschure RH (1982) Possible zircon U–Pb evidence for Pan-African granulite-facies metamorphism in the Mozambique Belt of southern Tanzania. Precambrian Res 17:31–40. doi:10.1016/0301-9268(82)90152-8

    Article  Google Scholar 

  • Debon F, Le Fort B (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149

    Google Scholar 

  • Dilek Y, Thy P (2006) Age and petrogenesis of plagiogranite intrusions in the Ankara mélange, central Turkey. Isl Arc 15:44–57. doi:10.1111/j.1440-1738.2006.00522.x

    Article  Google Scholar 

  • D’Orazio M, Innocenti F, Manetti P, Haller MJ (2004) Cenozoic back-arc magmatism of the southern extra-Andean Patagonia (44°30′–52°S): a review of geochemical data and geodynamic interpretations. Rev Assoc Geol Argent 59:525–538

    Google Scholar 

  • Dundas L (1965) Geological map of the South Pare mountains (Same), scale 1:125 000. Geological Survey Divison, Dodoma, Tanganyika

  • Farquhar OC (1960) Geology and asbestos deposits of the Taita Hills, Kenya. Mem Geol Surv Kenya 2:1–110

    Google Scholar 

  • Frisch W, Pohl W (1986) Petrochemistry of some mafic and ultramafic rocks from the Mozambique Belt, SE Kenya. Mitt österr Geol Ges 78:97–114

    Google Scholar 

  • Gamble JA, Smith IEM, McCulloch MT, Graham IJ, Kokelaar BP (1993) The Geochemistry and petrogenesis of basalts from the Taupo volcanic zone and Kermadec island arc, SW Pacific. J Volcanol Geotherm Res 54:265–290. doi:10.1016/0377-0273(93)90067-2

    Article  Google Scholar 

  • Gamble JA, Wrigth IC, Woodhead JD, McCulloch MT (1995) Arc and back-arc geochemistry in southern Kermadec arc-Ngatoro Basin and offshore Taupo Volcanic Zone, SW Pacific. In Smellie JL (ed). Volcanism associated with extension at consuming plate margins. Geol Soc Spec Publ 81:193–212

    Article  Google Scholar 

  • Gibson GM, Ireland TR (1999) Black Giants Anorthosite, New Zealand: a Paleozoic analogue of Archean stratiform anorthosites and implications for the formation of Archean high-grade gneiss terranes. Geology 27:131–134. doi :10.1130/0091-7613(1999)027<0131:BGANZA>2.3.CO;2

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin, pp 1–390

    Google Scholar 

  • Gorring ML, Kay SM (2001) Mantle processes and sources of neogene slab window magmas from Southern Patagonia, Argentina. J Petrol 42:1067–1094. doi:10.1093/petrology/42.6.1067

    Article  Google Scholar 

  • Hartley E, Moore W (1965) Quarter degree sheet 91, 110 (Daluni), scale 1:125,000. Geological Survey Divison, Dodoma

    Google Scholar 

  • Hauzenberger CA, Sommer S, Fritz H, Bauernhofer A, Kröner A, Hoinkes G et al (2007) SHRIMP U–Pb zircon and Sm–Nd garnet ages from granulite facies basement of SE-Kenya: evidence for Neoproterozoic polycyclic assembly of the Mozambique belt. J Geol Soc Lond 164:189–201. doi:10.1144/0016-76492005-081

    Article  Google Scholar 

  • Hauzenberger CA, Bauernhofer AH, Hoinkes G, Wallbrecher E, Mathu EM (2004) Pan-African high pressure granulites from SE Kenya: petrological and geothermobarometric evidence for a polycyclic evolution in the Mozambique belt. J Afr Earth Sci 40:245–268. doi:10.1016/j.jafrearsci.2004.12.004

    Article  Google Scholar 

  • Haraguchi S, Ishii T, Kimura J-I, Ohara Y (2003) Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol 145:151–168

    Google Scholar 

  • Horkel A, Niedermayr G, Wachira JK, Pohl W, Okelo REA, Nauta WJ (1979) Geology of the Taita Hills. Rep Geol Surv Kenya 102:1–33

    Google Scholar 

  • Ikeda Y, Yuasa M (1989) Volcanism in nascent back-arc basins behind the Shichito Ridge and adjacent areas in the Izu-Ogasawara arc, northwest Pacific: evidence for mixing between E-type MORB and island arc magmas at the initiation of back-arc rifting. Contrib Mineral Petrol 101:377–393. doi:10.1007/BF00372212

    Article  Google Scholar 

  • Johnson TE, Ayalew T, Mogessie A, Kruger FJ, Poujol M (2004) Constraints on the tectonometamorphic evolution of the Western Ethiopian Shield. Precambrian Res 133:305–327. doi:10.1016/j.precamres.2004.05.007

    Article  Google Scholar 

  • Johnson PR, Woldehaimanot B (2003) Development of the Arabian–Nubian Shield; perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geol Soc Spec Publ 206:289–325

    Article  Google Scholar 

  • Johnson SP, Cutton HNC, Muhongo S, De Waele B (2003) Neoarchean magmatism and metamorphism of the western granulites in the central domain of the Mozambique Belt, Tanzania: U-Pb shrimp geochronology and PT estimates. Tectonophysics 325:125–145. doi:10.1016/j.tecto.2003.06.003

    Article  Google Scholar 

  • Key RM, Charsley TJ, Hackman BD, Wilkinson AF, Rundle CC (1989) Superimposed Upper Proterozoic Collision-controlled Orogenies in the Mozambique Orogenic Belt of Kenya. Precambrian Res 44:197–225. doi:10.1016/0301-9268(89)90045-4

    Article  Google Scholar 

  • Klein EM, Langmuir CH, Staudigel H (1991) Geochemistry of basalts from the Southeast Indian Ridge, 115°E–138°. J Geophys Res 92:8089–8115. doi:10.1029/JB092iB08p08089

    Article  Google Scholar 

  • Knittel U, Oles D (1995) Basaltic volcanism associated with extensional tectonics in the Taiwan–Luzon island arc: evidence for non-depleted sources and subduction zone enrichment. In Smellie JL (ed) Volcanism associated with extension at consuming plate margins. Geol Soc Spec Publ 81:77–93

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol 146:414–432. doi:10.1007/s00410-003-0511-9

    Article  Google Scholar 

  • Kröner A, Muhongo S, Hegner E, Wingate MTD (2003) Single zircon geochronology and Nd isotopic systematics of Proterozoic high-grade rocks from the Mozambique belt of southern Tanzania (Masasi area): implications for Gondwana assembly. J Geol Soc Lond 160:745–757. doi:10.1144/0016-764901-170

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin BA (1986) Chemical classification of volcanic rocks based on the toal alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Leake BE (1964) The chemical distinction between ortho- and para-amphibolites. J Petrol 5:238–254

    Google Scholar 

  • Lentz DR (1998) Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulphide systems: the role of extensional geodynamics. Ore Geol Rev 12:289–327. doi:10.1016/S0169-1368(98)00005-5

    Article  Google Scholar 

  • Maboko MAH, Nakamura E (2002) Isotopic dating of Neoproterozoic crustal growth in the Usambara Mountains of northeastern Tanzania: evidence for coeval crust formation in the Mozambique Belt and the Arabian–Nubian Shield. Precambrian Res 113:227–242. doi:10.1016/S0301-9268(01)00213-3

    Article  Google Scholar 

  • Mercier A, Debat P, Saul JM (1999) Exotic origin of the ruby deposits of the Mangari area in SE Kenya. Ore Geol Rev 14:83–104. doi:10.1016/S0169-1368(99)00002-5

    Article  Google Scholar 

  • Möller A, Mezger K, Schenk V (1998) Crustal Age domains and the Evolution of Continental Crust in the Mozambique Belt of Tanzania. Combined Sm-Nd, Rb-Sr, Pb-Pb Isotopic Evidence. J Petrol 39:749–783

    Article  Google Scholar 

  • Möller A, Mezger K, Schenk V (2000) U–Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high-pressure granulites in Tanzania, East Africa. Precambrian Res 104:123–146. doi:10.1016/S0301-9268(00)00086-3

    Article  Google Scholar 

  • Moores EM (2002) Pre-1 Ga (pre-Rodinian) ophiolites: their tectonic and environmental implications. Geol Soc Am Bull 114:80–95. doi :10.1130/0016-7606(2002)114<0080:PGPROT>2.0.CO;2

    Article  Google Scholar 

  • Mosley PN (1993) Geological evolution of the late Proterozoic “Mozambique Belt” of Kenya. Tectonophysics 221:223–250. doi:10.1016/0040-1951(93)90334-G

    Article  Google Scholar 

  • Muhongo S, Lenoir JL (1994) Pan-African granulite-facies metamorphism in the Mozambique Belt of Tanzania: U–Pb zircon geochronology. J Geol Soc Lond 151:343–347. doi:10.1144/gsjgs.151.2.0343

    Article  Google Scholar 

  • Muhongo S, Kröner A, Nemchin AA (2001) Single Zircon evaporation and SHRIMP ages for Granu-lite-Facies rocks in the Mozambique belt of Tanzania. J Geol 109:171–189. doi:10.1086/319240

    Article  Google Scholar 

  • Parkinson J (1947) Outlines of the Geology of the Mtito Andei-Tsavo area, Kenya Colony. Rep Geol Surv 13:1–40

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites; orogenic andesites and related rocks. Wiley, Chichester

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Petrone CM, Francalanci L, Carlson RW, Ferrari L, Conticelli (2003) Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace element data from the magmatism of the San Pedro-Ceboruco graben (Nayarit, Mexico). Chem Geol 193:1–24. doi:10.1016/S0009-2541(02)00229-2

  • Piercey SJ, Murphy DC, Mortensen JK, Creaser RA (2004) Mid-Paleozoic initiation of the northern Cordilleran marginal backarc basin: Geologic, geochemical, and neodymium isotope evidence from the oldest mafic magmatic rocks in the Yukon-Tana terrane, Finlayson Lake district, southeast Yukon, Canada. Geol Soc Am Bull 116:1087–1106. doi:10.1130/B25162.1

    Article  Google Scholar 

  • Pimentel MM, Fuck AR (1992) Neoproterozoic crustal accretion in central Brazil. Geology 20:375–379. doi :10.1130/0091-7613(1992)020<0375:NCAICB>2.3.CO;2

    Article  Google Scholar 

  • Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944. doi:10.1093/petrology/egi005

    Article  Google Scholar 

  • Pohl W, Horkel A, Neubauer W, Niedermayr G, Okelo RE, Wachira JK, Werneck W (1980) Notes on the geology and mineral resources of the Mtito Andei-Taita area (southern Kenya). Mitt österr geol Ges 73:145–152

    Google Scholar 

  • Pohl W, Niedermayr G (1979) Geology of the Mwatate Quadrangle and the Vanadium Grossularite Deposits of the area. Rep Geol Surv Kenya 101:1–55

    Google Scholar 

  • Polat A, Hofmann AW, Münker CM, Regelous M, Appel PWU (2003) Contrasting geochemical patterns in the 3.7–3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: Implications for postmagmatic alteration processes. Geochim Cosmochim Acta 67:441–457. doi:10.1016/S0016-7037(02)01094-3

    Article  Google Scholar 

  • Prochaska W, Pohl W (1983) Petrochemistry of some mafic and ultramafic rocks from the Mozambique Belt, northern Tanzania. J Afr Earth Sci 1:183–191

    Google Scholar 

  • Roberts MP, Clemens JD (1993) Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21:825–828. doi :10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    Article  Google Scholar 

  • Rockow KM, Haskin LA, Jolliff BL, Fountain DM (1997) Constraints on element mobility associated with the conversion of granulite to eclogite along fractures in an anorthositic complex on Holsnøy, Norway. J Metamorphic Geol 15:401–418

    Article  Google Scholar 

  • Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochim Cosmochim Acta 49:1645–1655. doi:10.1016/0016-7037(85)90268-6

    Article  Google Scholar 

  • Saggerson EP (1962) Geology of the Kurase-Kasigau area. Rep Geol Surv Kenya 51:1–60

    Google Scholar 

  • Sanders LD (1963) Geology of the Voi-South Yatta Area. Rep Geol Surv Kenya 54:1–48

    Google Scholar 

  • Shand SJ (1927) Eruptive rocks. Their genesis, composition, classification and their relation to ore deposits. Murby, London

    Google Scholar 

  • Shackleton RM (1986) Precambrian collision tectonics in Africa. In: Coward MP, Ries AC (eds) Collision tectonics. Geological Society of London Spec Publ, vol 19, pp 329–349

  • Shackleton RM (1993) Tectonics of the lower crust: a view from the Usambara Mountains, NE Tanzania. J Struct Geol 15:663–671. doi:10.1016/0191-8141(93)90154-3

    Article  Google Scholar 

  • Shaw DW (1968) A review of the K–Rb fraction trends by covariance analysis. Geochim Cosmochim Acta 32:573–601. doi:10.1016/0016-7037(68)90050-1

    Article  Google Scholar 

  • Spandler C, Hermann J, Arculus R, Mavrogenes J (2004) Geochemical heterogeneity and element mobility in deeply subducted crust; insights from high-pressure mafic rocks from New Caledonia. Chem Geol 206:21–42. doi:10.1016/j.chemgeo.2004.01.006

    Article  Google Scholar 

  • Solesbury FW (1967) Gem corundum pegmatites in NE Tanganyika. Econ Geol 62:983–991

    Article  Google Scholar 

  • Sommer H, Kröner A, Hauzenberger CA, Muhongo S, Wingate MTD (2003) Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania: crustal recycling of Archean and Paleoproterozoic material during the Pan-African orogeny. J Metamorph Geol 21:915–934

    Article  Google Scholar 

  • Stephenson NCN (2000) Geochemistry of granulite-facies granitic rocks from Battye Glacier, northern Prince Charles Mountains, East Antarctica. Aust J Earth Sci 47:83–94. doi:10.1046/j.1440-0952.2000.00762.x

    Article  Google Scholar 

  • Stern RJ (2002) Crustal evolution in the East African Orogen: a neodymium isotopic perspective. J Afr Earth Sci 34:109–117. doi:10.1016/S0899-5362(02)00012-X

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ, vol 42, pp 313–345

  • Tadesse T, Hoshino M, Suzuki K, Iizumi S (2000) Sm–Nd, Rb–Sr and Th–U–Pb zircon ages of syn- to post-tectonic granitoids from the Axum area of northern Ethiopia. J Afr Earth Sci 30:313–327. doi:10.1016/S0899-5362(00)00022-1

    Article  Google Scholar 

  • Tarney J (1977) Petrology, mineralogy, and geochemistry of the Falkland Plateau basement rocks, Site 330, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 36, Ushuaia, Argentina to Rio de Janeiro, Brazil, April–May 1974, pp 893–921

  • Taylor RN, Nesbitt RW (1998) Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet Sci Lett 164:79–98. doi:10.1016/S0012-821X(98)00182-4

    Article  Google Scholar 

  • Teklay M, Kröner A, Mezger K, Oberhänsli R (1998) Geochemistry, Pb–Pb single zircon ages and Nd–Sr isotope composition of Precambrian rocks from southern and eastern Ethiopia; implications for crustal evolution in East Africa. J Afr Earth Sci 26:207–227. doi:10.1016/S0899-5362(98)00006-2

    Article  Google Scholar 

  • Tenczer V, Hauzenberger C, Fritz H, Whitehouse MJ, Mogessie A, Wallbrecher E et al (2006) Anorthosites in the Eastern Granulites of Tanzania—New SIMS zircon U–Pb age data, petrography and geochemistry. Precambrian Res 148:85–114. doi:10.1016/j.precamres.2006.03.004

    Article  Google Scholar 

  • Thiéblemont D, Tegyey M (1994) Geochemical discrimination of differentiated magmatic rocks attesting for the variable origin and tectonic setting of calc-alkaline magmas. Sci Terre Planet 319:87–94

    Google Scholar 

  • Thiéblemont D (1999) Discrimination between mantle- and crustal-derived Andean calc-alkaline lavas. Sci Terre Planet 329:243–250

    Google Scholar 

  • Whalen JB (1985) Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, P.N.G. J Petrol 26:603–632

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites; geochemical characteristics, discrimination and petrogenesis. Contr Min Petrol 95:407–419. doi:10.1007/BF00402202

    Article  Google Scholar 

  • Whitehouse MJ, Windley BF, Stoeser DB, Al-Khirbash S, Ba-Bttat MAO, Haider A (2001) Precambrian basement character of Yemen and correlations with Saudi Arabia and Somalia. Precambrian Res 105:357–369. doi:10.1016/S0301-9268(00)00120-0

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. doi:10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

  • Winchester JA, Park RG, Holland JG (1980) The geochemistry of Lewisian semipelitic schists from the Gairloch Disctrict, Wester Ross, North-West Scotland. Scott J Geol 16:165–179

    Article  Google Scholar 

  • Wood DA (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30. doi:10.1016/0012-821X(80)90116-8

    Article  Google Scholar 

  • Woodhead J, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt. Earth Planet Sci Lett 114:491–504. doi:10.1016/0012-821X(93)90078-N

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank our colleagues from the University of Nairobi and Dar es Salaam who have supported this work. Sincere thanks are given to T. Schlüter and D. Hollnack for their help, E. M. Mathu for support in the field and G. Niedermayr for providing maps and reports from SE Kenya. Many thanks to the rangers of the Tsavo East National Park, J. Loizenbauer and H. Fritz for discussion and that they brought along a gneiss sample from the western Galana area, and to F. Bernhard for his help to start the work and valuable comments. A.B. is much indebted to Peter R. Johnson and Victoria Pease for thorough reviews of the ms which greatly improved the readability, presentation and evaluation of the data. The final version was again refined by numerous corrections and suggestions of V. Pease. The fundamental criticism and specific comments by Kent Condie on an earlier version are greatly acknowledged. W. Pohl is thanked for a discussion several years ago (that was not necessarily focused on geology) as well as W. Piller who provided working facilities. I am further indebted to topic editor R. J. Stern and editor W.-Chr. Dullo that this data and ideas could be presented in an international journal. This study was made possible by funding from the Austrian Science Foundation (FWF grants P12375-GEO and P15599) which also allowed me and colleagues to undertake several field trips to E Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bauernhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauernhofer, A.H., Hauzenberger, C.A., Wallbrecher, E. et al. Geochemistry of basement rocks from SE Kenya and NE Tanzania: indications for rifting and early Pan-African subduction. Int J Earth Sci (Geol Rundsch) 98, 1809–1834 (2009). https://doi.org/10.1007/s00531-008-0345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0345-9

Keywords

Navigation