Skip to main content
Log in

U–Pb geochronology of gneisses and granitoids from the Danish island of Bornholm: new evidence for 1.47–1.45 Ga magmatism at the southwestern margin of the East European Craton

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Danish island of Bornholm is located at the southwestern margin of the Fennoscandian Shield, and features exposed Precambrian basement in its northern and central parts. In this paper, we present new U–Pb zircon and titanite ages for granites and orthogneisses from 13 different localities on Bornholm. The crystallization ages of the protolith rocks all fall within the range 1,475–1,445 Ma (weighted average 207Pb/206Pb ages of zircon). Minor age differences, however, may imply a multi-phase emplacement history of the granitoid complex. The presence of occasional inherited zircons (with ages of 1,700–1,800 Ma) indicates that the Bornholm granitoids were influenced by older crustal material. The east–west fabric observed in most of the studied granites and gneisses, presumably originated by deformation in close connection with the magmatism at 1,470–1,450 Ma. Most titanite U–Pb ages fall between 1,450 and 1,430 Ma, reflecting post-magmatic or post-metamorphic cooling. Granitoid magmatism at ca. 1.45 Ga along the southwestern margin of the East European Craton has previously been reported from southern Sweden and Lithuania. The ages obtained in this study indicate that the Bornholm magmatism also was part of this Mesoproterozoic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Åberg G (1988) Middle Proterozoic anorogenic magmatism in Sweden and worldwide. Lithos 21:279–289. doi:10.1016/0024-4937(88)90033-3

    Article  Google Scholar 

  • Abramowitz T, Berthelsen A, Thybo H (1997) Proterozoic sutures and terranes in the southeastern Baltic shield interpreted from BABEL deep seismic data. Tectonophysics 270:259–277. doi:10.1016/S0040-1951(96)00213-2

    Article  Google Scholar 

  • Åhäll K-I (2001) Åldersbestämning av svårdaterade bergarter i sydöstra Sverige. Unpublished report R-01-60, Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm

  • Appelquist K, Brander L, Larson SÅ, Stigh J (2006) 1.45 Ga metamorphic imprint on zircons from the Transscandinavian igneous belt and the eastern segment. Abstract, 27th Nordic geological winter meeting, Oulu. Bull Geol Soc Finland (Spec Issue) 1:10

    Google Scholar 

  • Bayer U, Grad M, Pharao TC, Thybo H, Guterch A, Banka D, Lamarche J, Lassen A, Lewerenz B, Scheck M, Marotta A-M (2002) The southern margin of the East European Craton: new results from seismic sounding and potential fields between the North Sea and Poland. Tectonophysics 360:301–314. doi:10.1016/S0040-1951(02)00359-1

    Article  Google Scholar 

  • Berthelsen A (1989) Bornholms geologi III: Grundfjeldet. Varv 1989(1):1–40

    Google Scholar 

  • Bogdanova S (2001) Tectonic settings of 1.65–1.4 Ga AMCG magmatism in the western East European Craton (western Baltica). EUG XI Abstracts, Strasbourg, p 769

    Google Scholar 

  • Bogdanova S (2005) The East European Craton: some aspects of the Proterozoic evolution in its south-west. Mineral Soc Poland Spec Papers 26:18–24

    Google Scholar 

  • Bogdanova S (2008) The 1.50–1.45 Ga Danoplonian orogeny: from accretion to collision? Abstract volume, 28th Nordic geological winter meeting. Aalborg, Denmark, p 134

    Google Scholar 

  • Bogdanova S, Page LM, Skridlaite G, Taran LN (2001) Proterozoic tectonothermal history in the western part of the East European Craton: 40Ar/39Ar geochronological constraints. Tectonophysics 339:39–66. doi:10.1016/S0040-1951(01)00033-6

    Article  Google Scholar 

  • Bogdanova SV, Bingen B, Gorbatschev R, Kheraskova TN, Kozlov VI, Puchkov VN, Volozh YuA (2008) The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Res 160:23–45. doi:10.1016/j.precamres.2007.04.024

    Article  Google Scholar 

  • Callisen K (1932) Beiträge zur Kenntnis des Granitgrundgebirges von Bornholm. Dissertation, University of Copenhagen. Reitzel CA, København, pp 1–154

  • Callisen K (1934) Das Grundgebirge von Bornholm. Danmarks Geologiske Undersøgelse, II Raekke 50, pp 1–266

  • Callisen K (1956) Fragmenter og spor af bjergarter ældre end graniten paa Bornholm. Meddelser Dansk Geologisk Forening 13:158–173

    Google Scholar 

  • Callisen K (1957) Hornblende with pyroxene core in the Rønne Granite, Bornholm. Meddelser Dansk Geologisk Forening 13:236–237

    Google Scholar 

  • Čečys A (2004) Tectonic implications of ca. 1.45 Ga granitoid magmatism at the southwestern margin of the East European Craton. PhD thesis, Department of Geology, Lund University, pp 24 + 4 articles

  • Čečys A, Benn K (2007) Emplacement and deformation of the ca. 1.45 Ga Karlshamn granitoid pluton, southeastern Sweden, during ENE–WSW Danopolonian shortening. Int J Earth Sci 96:397–414. doi:10.1007/s00531-006-0114-6

    Article  Google Scholar 

  • Čečys A, Bogdanova S, Janson Ch, Bibikova E, Kornfält K-A (2002) The Stenshuvud and Tåghusa granitoids: new representatives of Mesoproterozoic magmatism in southern Sweden. GFF 124:149–162

    Article  Google Scholar 

  • Christoffel CA, Connelly JN, Åhäll K-I (1999) Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. Precambrian Res 98:173–195. doi:10.1016/S0301-9268(99)00046-7

    Article  Google Scholar 

  • Debon F, Le Fort P (1983) A chemical–mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinburgh: Earth Sci 73:135–150 (for 1982)

    Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–148. doi:10.1016/S0009-2541(00)00240-0

    Article  Google Scholar 

  • Gravesen P (1996) Geologisk set Bornholm. Geografforlaget, Brenderup, pp 1–208

    Google Scholar 

  • Holm PM, Heaman LM, Pedersen LE (2005) First direct age determination for the Kelseaa Dolerite Dyke, Bornholm, Denmark. Bull Geol Soc Denmark 52:125–130

    Google Scholar 

  • Hubbard FH (1975) The Precambrian crystalline complex of southwestern Sweden. The geology and petrogenetic development of the Varberg Region. GFF 97:223–236

    Google Scholar 

  • Jensen SL, Thybo H, The POLONAISE’97 Working Group (2002) Moho topography and lower crustal wide-angle reflectivity around the TESZ in southern Scandinavia and northeastern Europe. Tectonophysics 360:187–213. doi:10.1016/S0040-1951(02)00354-2

    Article  Google Scholar 

  • Johansson, Å (2008) Baltica, Amazonia and the SAMBA connection. Abstract, 33rd international geological congress, Oslo, Norway (in press)

  • Johansson Å, Bogdanova S, Claesson S, Taran L (2004) Gneisses and granitoids of Bornholm. Abstract, 26th Nordic geological winter meeting, Uppsala, Sweden. GFF 126:24

    Google Scholar 

  • Johansson Å, Bogdanova S, Čečys A (2006) A revised geochronology for the Blekinge Province, southern Sweden. GFF 128:287–302

    Article  Google Scholar 

  • Jørgart T (2000) The basement geology of Bornholm. An excursion guide. Paper for the field conference “TransBaltic Precambrian Correlations”, the Visby Programme/Swedish Institute and EUROBRIDGE/ESF. Bornholm-Blekinge, 17–30 July 2000. pp 1–37

  • Kinny PD, McNaughton NJ, Fanning CM, Maas R (1994) 518 Ma sphene (titanite) from the Khan pegmatite, Namibia, southwest Africa: a potential ion-microprobe standard (abstract) ICOG8, Berkeley. US Geological Survey Circular 1107, 171

  • Larsen O (1971) K/Ar Age determinations from the Precambrian of Denmark. Geol Surv Denmark. II series 97:1–37

    Google Scholar 

  • Larsen O (1980) Geologisk aldersbestemmelse ved isotopmålinger. Dansk Natur-Dansk Skole. Årsskrift for 1980:89–106

    Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, p 193

    Google Scholar 

  • Ludwig KR (1998) On the treatment of concordant uranium–lead ages. Geochim Cosmochim Acta 62:665–667

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot/Ex 3.00. A Geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Spec. Pub. 4 10.1016/S0016-7037(98)00059-3

  • Micheelsen HI (1961) Bornholms Grundfjeld. Meddelser Dansk Geologisk Forening 14:308–349

    Google Scholar 

  • Motuza G, Čečys A, Kotov AB, Salnikova EB (2006) The Žemaičių Naumiestis granitoids: new evidences for Mesoproterozoic magmatism in western Lithuania. GFF 128:243–254

    Article  Google Scholar 

  • Münther V (1973) Dominerande forkastningszoner på Bornholm. Geol Surv Denmark II Series 85:1–161

    Google Scholar 

  • Obst K (2000) Permo-Carboniferous dyke magmatism on the Danish island Bornholm. N Jb Geol Palaont Abh. 218:243–266

    Google Scholar 

  • Obst K, Hammer J, Katzung G, Korich D (2004) The Mesoproterozoic basement in the southern Baltic Sea: insights from the G 14–1 off-shore borehole. Int J Earth Sci 93:1–12. doi:10.1007/s00531-003-0371-6

    Article  Google Scholar 

  • Pharao TC, Winchester JA, Verniers J, Lassen A, Seghedi A (2006) The western accretionary margin of the East European Craton: an overview. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society Memoir, 32 pp 291–311

  • Platou SW (1970) The Svaneke granite complex and the gneisses on East Bornholm. Bull Geol Soc Denmark 20:93–133

    Google Scholar 

  • Skridlaite G, Wisniewska J, Duchesne J-C (2003) Ferro-potassic A-type granites and related rocks in NE Poland and S Lithuania: west of the East European Craton. Precambrian Res 124:305–326. doi:10.1016/S0301-9268(03)00090-1

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Söderlund U, Möller C, Andersson J, Johansson L, Whitehouse M (2002) Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogeny, SW Sweden: ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking. Precambrian Res 113:193–225. doi:10.1016/S0301-9268(01)00206-6

    Article  Google Scholar 

  • Tschernoster R (2000) Isotopengeochemische Untersuchungen am Detritus der Dänisch-Norddeutsch-Polnischen Kaledoniden und deren Vorland. Ph.D. thesis, RWTH Aachen. Shaker Verlag, Köln, Germany, pp 1–128

    Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19:1–24. doi:10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Whitehouse MJ, Claesson S, Sunde T, Vestin J (1997) Ion microprobe U–Pb zircon geochronology and correlation of Archean gneisses from the Lewisian Complex of Gruinard Bay, Northwestern Scotland. Geochem Cosmochem Acta 61:4429–4438. doi:10.1016/S0016-7037(97)00251-2

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U-Th–Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies. Chem Geol 160:201–224. doi:10.1016/S0009-2541(99)00066-2

    Article  Google Scholar 

  • Zarins K (2007) U–Pb geochronology and geochemistry of the basement of Bornholm: new evidence for ca. 1.45 Ga magmatism at the southwestern margin of the East European Craton. Unpublished licentiate thesis, Department of Earth Sciences, Uppsala University

    Google Scholar 

Download references

Acknowledgments

Samples 95041–95045 were obtained from Stefan Claesson (Stockholm); the other samples were collected in cooperation with Svetlana Bogdanova and Audrius Cecys (Lund) and Andrius Rimsa (Stockholm). Paula Allart carried out the mineral separation work at the Swedish Museum of Natural History in Stockholm, and Per-Olof Persson gave advice on U–Pb preparation of titanite. The NORDSIM ion microprobe analyses were carried out with the help of Martin Whitehouse, Lev Ilyinsky and Kerstin Lindén of the NORDSIM laboratory. The NORDSIM ion microprobe laboratory is financed under contract with the Nordic Natural Science Research Councils and the Swedish Museum of Natural History. This is NORDSIM publication no. 210. Funding for the Bornholm project was received from the Swedish Research Council (VR), grant 621-2003-3564, to ÅJ, with additional funding for KZ:s salary from Uppsala University and for her field work on Bornholm from “Riksmusei vänner”. We especially want to acknowledge the cooperation and support of Hemin Koyi (Uppsala) and Svetlana Bogdanova (Lund), who also gave valuable comments on earlier versions of the manuscript. Karin Högdahl (Lund) carefully examined the licentiate thesis of KZ, in which an early version of this paper formed an important part. Svetlana Bogdanova (Lund) and Jenny Andersson (Uppsala) reviewed the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åke Johansson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zariņš, K., Johansson, Å. U–Pb geochronology of gneisses and granitoids from the Danish island of Bornholm: new evidence for 1.47–1.45 Ga magmatism at the southwestern margin of the East European Craton. Int J Earth Sci (Geol Rundsch) 98, 1561–1580 (2009). https://doi.org/10.1007/s00531-008-0333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0333-0

Keywords

Navigation