Skip to main content
Log in

Stable isotope characterisation of co-existing carbonates from the Holocene Gallocanta lake (NE Spain): palaeolimnological implications

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The sedimentary succession of Gallocanta lake, a closed saline lake located in the Iberian Range (NE Spain), documents two successive lacustrine stages: (1) brackish lake stage and (2) shallow saline lake stage. The saline stage corresponds to the present-day situation in which the lake water properties are mainly controlled by a strongly negative annual water balance. The carbonates of the brackish lake stage have relatively constant δ18O values, however, they are rather high (δ18ODo = 2.4‰ and δ18OCc = 4.5‰ mean values) suggesting a hydrologically closed lake with a long residence time of the waters. δ18O values of carbonates from the saline stage vary greatly, and are lighter than in the previous stage (δ18ODo = 0.5‰, δ18OCc = −0.7‰, δ18OMgs = −2.3‰ mean values). These carbonates also precipitated in a hydrologically closed lake, but in equilibrium with a lake water of more variable isotopic composition. The δ13C values for carbonates of both stages reflect a mixing of different pools of carbon, but during saline stage δ13C values have been more controlled by the equilibrium of the lake waters with atmospheric CO2. During the current stage, calcite and dolomite precipitate in Gallocanta lake mainly during spring and summer, although dolomite precipitation is more favoured towards the summer. Magnesite precipitates at the beginning of autumn, when the first rainfall re-dissolves the saline surface crust, producing saline waters with a high Mg2+ content. The isotopic composition of lake waters sampled in 2005 are far higher than those calculated from the carbonates. It is considered that this could be due to two factors: either because there have not been many extremely dry years (like the year 2005) during the development of the lake, or because the physical and chemical characteristics of the lake waters in such conditions are not appropriate for the development of these minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aharon P (1988) A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia; implications for the origin of strata-bound massive magnesites. Chem Geol 69:127–145

    Article  Google Scholar 

  • APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington DC, pp 1–1268

    Google Scholar 

  • Aravena R, Warner BG, MacDonald GM (1992) Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quat Res 37:333–345

    Article  Google Scholar 

  • Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS (1983) Stable isotopes in sedimentary geology. SEPM Short Course No. 10, Soc Econ Paleont Mineral, Tulsa, OK

  • Calvo J, González Lopez JM, González Martínez JA, Villena J (1978) Primeros datos sobre la sedimentación de dolomía en la Laguna de Gallocanta. Tecniterrae 21:1–10

    Google Scholar 

  • Chafetz HS, Imerito-Tetzlaff AA, Zhang JL (1999) Stable isotope and elemental trends in Pleistocene sabkha dolomites: descending meteoric water vs. sulfate reduction. J Sediment Res Sect A 69:256–266

    Google Scholar 

  • Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7:526–531

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Cole J, Caraco N, Kling G, Kratz T (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    Article  Google Scholar 

  • Comín F, Alonso M, López P, Comelles M (1983) Limnology of Gallocanta Lake, Aragón, northeastern Spain. Hydrobiologia 105:207–221

    Article  Google Scholar 

  • Comín F, Julia R, Comín P, Plana F (1990) Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 197:51–66

    Article  Google Scholar 

  • Corzo A, Luzón A, Mayayo MJ, Mata MP, Van Bergeijk S, García de Lomas J (2005) Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiol J 22:1–16

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures, Lab. Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Das Sharma S, Patil DJ, Gopalan K (2002) Temperature dependence of oxygen isotope fractionation of CO2 from magnesite-phosphoric acid reaction. Geochim Cosmochim Acta 66:589–593

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4(5):213–224

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry. kk USGS Professional Paper, pp 1–440

  • Fritz P, Smith DGW (1970) The isotopic composition of secondary dolomites. Geochim Cosmochim Acta 34(11):1161–1173

    Article  Google Scholar 

  • Fronval T, Jensen NB, Buchardt B (1995) Oxygen isotope disequilibrium of calcite in lake Arreso, Denmark. Geology 23:463–466

    Article  Google Scholar 

  • Giralt S, Burjachs F, Roca J R, Julia R (1999) Late glacial to early Holocene environmental adjustment in the Mediterranean semi-arid zone of the Salines playa-lake (Alicante, Spain). J Paleolimnol 21(4):449–460

    Article  Google Scholar 

  • Gonfiantini R (1984) Report of Advisory Group Meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Gracia FJ, Gutiérrez F, Gutiérrez M (2002) Origin and evolution of the Gallocanta polje (Iberian Range, NE Spain). Z Geomorphol 46(2):245–262

    Google Scholar 

  • Gunatilaka A (1987) The dolomite problem in the light of the recent studies. Modern Geol 11:311–324

    Google Scholar 

  • Gunatilaka A, Saleh AA, Nassar N (1987) Calcium-poor dolomite from the sabkhas of Kuwait. Sedimentology 34:999–1006

    Article  Google Scholar 

  • Hakänsson S (1985) A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post-glacial environmental conditions. Quat Sci Rev 4:135–146

    Article  Google Scholar 

  • Hoefs J (1987) Stable isotope geochemistry. In: Wyllie PJ, El Goresy A, Von Engelhardt W (eds) Springer, New York

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213

    Article  Google Scholar 

  • Kelts K, Talbot MR (1990) Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions. In: Tilzer MM, Serruya C (eds) Ecological structure and function in large lakes. Springer, Heidelberg, pp 288–315

    Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Article  Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitization, vol 28. SEPM Spec Publ, pp 87–110

  • Last WM (1990) Lacustrine dolomite—an overview of modern, Holocene, and Pleistocene occurrences. Earth Sci Rev 27:221–263

    Article  Google Scholar 

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  Google Scholar 

  • Li HC, Ku TL (1997) δ13C–δ18O covariance as a palaeohydrological indicator for closed-basin lakes. Palaeogeogr Palaeoclimatol Palaeoecol 132:69–80

    Article  Google Scholar 

  • Lumsden DN, Lloyd RV (1997) Tree dolomites. J Sediment Res Sect A Sediment Petrol Process 67:391–396

    Google Scholar 

  • Luzón A, Pérez A, Mayayo MJ, Soria AR, Sánchez JA, Roc AC (2007a) Palaeogeographical changes since 11,000 yr BP in the Gallocanta lacustrine basin. Iberian Range. NE Spain. The Holocene 17:649–663

    Article  Google Scholar 

  • Luzón A, Pérez A, Sánchez JA, Soria AR, Mayayo MJ (2007b) Evolution from fresh-water to saline lake: a climatic or hydrogeological change? The case of Gallocanta Lake (NE Spain). Hydrol Process 21:461–469

    Article  Google Scholar 

  • Matthews A, Katz A (1977) Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim Cosmochim Acta 41:1431–1438

    Article  Google Scholar 

  • Mayayo MJ, Luzón A, Soria AR, Roc AC, Sánchez JA, Pérez A (2003) Sedimentological evolution of Holocene Gallocanta Lake, NE Spain. In: Valero B (ed) Limnogeology in Spain: a tribute to Kerry Kelts. Dpto de Publicaciones del Consejo Superior de Investigaciones Científicas (C.S.I.C), Madrid, pp 359–384

    Google Scholar 

  • McCrea JM (1950) The isotopic composition of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • McKenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.; a stable isotope study. J Geol 89(2):185–198

    Google Scholar 

  • Morrison J, Brockwell T, Merren T, Fourel F, Phillips AM (2001) On-line high-precision stable hydrogen isotopic analyses of nanoliter water samples. Anal Chem 73:3570–3575

    Article  Google Scholar 

  • Northrop DA, Clayton RN (1966) Oxygen-isotope fractionations in systems containing dolomite. J Geol 74(2):174–196

    Article  Google Scholar 

  • O’Neil JR, Epstein S (1966) Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science 152(3719):98–201

    Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Peñalba MC, Arnold M, Guiot J, Duplessy JC, Beaulieu JL (1997) Termination of the Last Glaciation in the Iberian Peninsula inferred from the Pollen sequence of Quintanar de la Sierra. Quat Res 48:205–214

    Article  Google Scholar 

  • Pérez A, Luzón A, Roc A, Soria A, Mayayo M, Sánchez JA (2002) Sedimentary facies distribution and genesis of a recent carbonate-rich saline lake: Gallocanta Lake. Iberian Chain, NE Spain. Sediment Geol 148:185–202

    Article  Google Scholar 

  • Queralt I, Julià R, Plana F, Bischoff JL (1997) A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain. Am Mineral 82:812–819

    Google Scholar 

  • Roc AC (2003) Evolución medioambiental de las lagunas salino-carbonatadas durante el Holoceno en la Cuenca de Gallocanta (Aragón, NE de España). Estudio Sedimentológico y Palinológico. Unpublished PhD Thesis, University of Zaragoza, Spain, pp 1–452

  • Rodó X, Giralt S, Burjachs F, Comín F, Tenorio RG, Julià R (2002) High-resolution saline lake sediments as enhanced tools for relating proxy paleolake records to recent climatic data series. Sediment Geol 148:203–220

    Article  Google Scholar 

  • San Román J (2004) Establecimiento de las normas de explotación de la unidad hidrogeológica “Gallocanta” y la delimitación de los perímetros de protección de la laguna. Memoria del Ministerio de Medio Ambiente

  • Sheppard SMF, Schwarz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between metamorphic calcite and dolomite. Contrib Mineral Petrol 26:161–198

    Article  Google Scholar 

  • Schmidt M, Xeflide S, Botz R, Mann S (2005) Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation. Geochim Cosmochim Acta 69:4665–4674

    Article  Google Scholar 

  • Stuiver M (1975) Climate versus changes in 13C content of the organic component of lake sediments during the late Quaternary. Quat Res 5(2):251–262

    Article  Google Scholar 

  • Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol (Isot Geosci Sect) 80:261–279

    Article  Google Scholar 

  • Talbot MR, Kelts K (1990) Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments. In: Kat BJ (ed) Lacustrine Basin exploration. Case Studies and Modern Analogs, vol 50. AAPG, pp 99–112

  • Tucker ME (1990) Dolomites and dolomitization models. In: Tucker ME, Wright VP, Dickson JAD (eds) Carbonate sedimentology. Blackwell, Oxford pp 365–400

    Google Scholar 

  • Valero Garcés BL, Kelts K, Ito E (1995) Oxygen and carbon isotope trends and sedimentological evolution of a Meromictic and Saline Lacustrine System: the Holocene Medicine Lake Basin, North American Great Plains, USA. Palaeogeogr Palaeoclimatol Palaeoecol 117:253–278

    Article  Google Scholar 

  • Valero-Garcés BL, Zeroual E, Kelts K (1998) Arid phases in the western Mediterranean region during the Last Glacial Cycle reconstructed from lacustrine records. In: Benito G, Baker VR, Gregory KJ (eds) Paleohydrology and environmental change. Wiley, London, pp 67–80

    Google Scholar 

  • Valero-Garcés BL, Delgado-Huertas A, Navas A, Machin J, Gonzalez-Samperiz P, Kelts K (2000) Quaternary palaeohydrological evolution of a playa lake; Salada Mediana, central Ebro Basin, Spain. Sedimentology 47(6):1135–1156

    Article  Google Scholar 

  • Valero Garcés BL, Martí C, García-Ruiz JM, González-Sampériz P, Lorente A, Begueira S, Navas A, Machín J, Delgado-Huertas A, Stevenson T, Basil D (2001) Late glacial and early Holocene paleohydrological and environmental change along a humid-arid transect from the Central Pyrenees to the Ebro Valley (Spain). Terra Nostra 3. In: Proceedings of 6th ELDP Workshop, Postdam

  • Van Lith Y, Vasconcelos C, Warthmann R, Martins JCF, McKenzie JA (2002) Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiology 485:35–49

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67(3):378–390

    Google Scholar 

  • Vasconcelos C, Judith A, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320

    Article  Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C18 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395

    Article  Google Scholar 

  • Walters LJ Jr, Caypool GG, Choquette PW (1972) Reaction rates and 18O variation for the carbonate-phosphoric acid preparation method. Geochim Cosmochim Acta 36:129–140

    Article  Google Scholar 

  • Warren JK (2000) Dolomite, occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81

    Article  Google Scholar 

  • Wright DT (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol 126:147–157

    Article  Google Scholar 

  • Wright DT (2000) Benthic microbial communities and dolomite formation in marine and lacustrine environments—a new dolomite model. In: Glenn CR, Prevot LL, Lucas J (eds) Marine authigenesis; from global to microbial, vol 66. SEPM Spec. Publ, pp 7–20

  • Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their valuable suggestions, which led to a considerable improvement of the manuscript. Miguel Angel García Vera, of the Ebro River Basin Authority, is gratefully acknowledged for giving us access to the climate data from the Gallocanta meteorological station. This research was supported by project CGL2004-02616/BTE of the Education and Science Ministry of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Luzón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luzón, A., Mayayo, M.J. & Pérez, A. Stable isotope characterisation of co-existing carbonates from the Holocene Gallocanta lake (NE Spain): palaeolimnological implications. Int J Earth Sci (Geol Rundsch) 98, 1129–1150 (2009). https://doi.org/10.1007/s00531-008-0308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0308-1

Keywords

Navigation