Abstract
The sedimentary succession of Gallocanta lake, a closed saline lake located in the Iberian Range (NE Spain), documents two successive lacustrine stages: (1) brackish lake stage and (2) shallow saline lake stage. The saline stage corresponds to the present-day situation in which the lake water properties are mainly controlled by a strongly negative annual water balance. The carbonates of the brackish lake stage have relatively constant δ18O values, however, they are rather high (δ18ODo = 2.4‰ and δ18OCc = 4.5‰ mean values) suggesting a hydrologically closed lake with a long residence time of the waters. δ18O values of carbonates from the saline stage vary greatly, and are lighter than in the previous stage (δ18ODo = 0.5‰, δ18OCc = −0.7‰, δ18OMgs = −2.3‰ mean values). These carbonates also precipitated in a hydrologically closed lake, but in equilibrium with a lake water of more variable isotopic composition. The δ13C values for carbonates of both stages reflect a mixing of different pools of carbon, but during saline stage δ13C values have been more controlled by the equilibrium of the lake waters with atmospheric CO2. During the current stage, calcite and dolomite precipitate in Gallocanta lake mainly during spring and summer, although dolomite precipitation is more favoured towards the summer. Magnesite precipitates at the beginning of autumn, when the first rainfall re-dissolves the saline surface crust, producing saline waters with a high Mg2+ content. The isotopic composition of lake waters sampled in 2005 are far higher than those calculated from the carbonates. It is considered that this could be due to two factors: either because there have not been many extremely dry years (like the year 2005) during the development of the lake, or because the physical and chemical characteristics of the lake waters in such conditions are not appropriate for the development of these minerals.
Similar content being viewed by others
References
Aharon P (1988) A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia; implications for the origin of strata-bound massive magnesites. Chem Geol 69:127–145
APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington DC, pp 1–1268
Aravena R, Warner BG, MacDonald GM (1992) Carbon isotope composition of lake sediments in relation to lake productivity and radiocarbon dating. Quat Res 37:333–345
Arthur MA, Anderson TF, Kaplan IR, Veizer J, Land LS (1983) Stable isotopes in sedimentary geology. SEPM Short Course No. 10, Soc Econ Paleont Mineral, Tulsa, OK
Calvo J, González Lopez JM, González Martínez JA, Villena J (1978) Primeros datos sobre la sedimentación de dolomía en la Laguna de Gallocanta. Tecniterrae 21:1–10
Chafetz HS, Imerito-Tetzlaff AA, Zhang JL (1999) Stable isotope and elemental trends in Pleistocene sabkha dolomites: descending meteoric water vs. sulfate reduction. J Sediment Res Sect A 69:256–266
Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures II. Adiabatic principle of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7:526–531
Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, Boca Raton
Cole J, Caraco N, Kling G, Kratz T (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570
Comín F, Alonso M, López P, Comelles M (1983) Limnology of Gallocanta Lake, Aragón, northeastern Spain. Hydrobiologia 105:207–221
Comín F, Julia R, Comín P, Plana F (1990) Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 197:51–66
Corzo A, Luzón A, Mayayo MJ, Mata MP, Van Bergeijk S, García de Lomas J (2005) Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiol J 22:1–16
Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149
Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703
Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures, Lab. Geologia Nucleare, Pisa, pp 9–130
Das Sharma S, Patil DJ, Gopalan K (2002) Temperature dependence of oxygen isotope fractionation of CO2 from magnesite-phosphoric acid reaction. Geochim Cosmochim Acta 66:589–593
Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4(5):213–224
Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry. kk USGS Professional Paper, pp 1–440
Fritz P, Smith DGW (1970) The isotopic composition of secondary dolomites. Geochim Cosmochim Acta 34(11):1161–1173
Fronval T, Jensen NB, Buchardt B (1995) Oxygen isotope disequilibrium of calcite in lake Arreso, Denmark. Geology 23:463–466
Giralt S, Burjachs F, Roca J R, Julia R (1999) Late glacial to early Holocene environmental adjustment in the Mediterranean semi-arid zone of the Salines playa-lake (Alicante, Spain). J Paleolimnol 21(4):449–460
Gonfiantini R (1984) Report of Advisory Group Meeting on stable isotope reference samples for geochemical and hydrological investigations. International Atomic Energy Agency, Vienna
Gracia FJ, Gutiérrez F, Gutiérrez M (2002) Origin and evolution of the Gallocanta polje (Iberian Range, NE Spain). Z Geomorphol 46(2):245–262
Gunatilaka A (1987) The dolomite problem in the light of the recent studies. Modern Geol 11:311–324
Gunatilaka A, Saleh AA, Nassar N (1987) Calcium-poor dolomite from the sabkhas of Kuwait. Sedimentology 34:999–1006
Hakänsson S (1985) A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to post-glacial environmental conditions. Quat Sci Rev 4:135–146
Hoefs J (1987) Stable isotope geochemistry. In: Wyllie PJ, El Goresy A, Von Engelhardt W (eds) Springer, New York
Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213
Kelts K, Talbot MR (1990) Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions. In: Tilzer MM, Serruya C (eds) Ecological structure and function in large lakes. Springer, Heidelberg, pp 288–315
Kim ST, O’Neil JR (1997) Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475
Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitization, vol 28. SEPM Spec Publ, pp 87–110
Last WM (1990) Lacustrine dolomite—an overview of modern, Holocene, and Pleistocene occurrences. Earth Sci Rev 27:221–263
Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831
Li HC, Ku TL (1997) δ13C–δ18O covariance as a palaeohydrological indicator for closed-basin lakes. Palaeogeogr Palaeoclimatol Palaeoecol 132:69–80
Lumsden DN, Lloyd RV (1997) Tree dolomites. J Sediment Res Sect A Sediment Petrol Process 67:391–396
Luzón A, Pérez A, Mayayo MJ, Soria AR, Sánchez JA, Roc AC (2007a) Palaeogeographical changes since 11,000 yr BP in the Gallocanta lacustrine basin. Iberian Range. NE Spain. The Holocene 17:649–663
Luzón A, Pérez A, Sánchez JA, Soria AR, Mayayo MJ (2007b) Evolution from fresh-water to saline lake: a climatic or hydrogeological change? The case of Gallocanta Lake (NE Spain). Hydrol Process 21:461–469
Matthews A, Katz A (1977) Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim Cosmochim Acta 41:1431–1438
Mayayo MJ, Luzón A, Soria AR, Roc AC, Sánchez JA, Pérez A (2003) Sedimentological evolution of Holocene Gallocanta Lake, NE Spain. In: Valero B (ed) Limnogeology in Spain: a tribute to Kerry Kelts. Dpto de Publicaciones del Consejo Superior de Investigaciones Científicas (C.S.I.C), Madrid, pp 359–384
McCrea JM (1950) The isotopic composition of carbonates and a paleotemperature scale. J Chem Phys 18:849–857
McKenzie JA (1981) Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.; a stable isotope study. J Geol 89(2):185–198
Morrison J, Brockwell T, Merren T, Fourel F, Phillips AM (2001) On-line high-precision stable hydrogen isotopic analyses of nanoliter water samples. Anal Chem 73:3570–3575
Northrop DA, Clayton RN (1966) Oxygen-isotope fractionations in systems containing dolomite. J Geol 74(2):174–196
O’Neil JR, Epstein S (1966) Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science 152(3719):98–201
O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558
Peñalba MC, Arnold M, Guiot J, Duplessy JC, Beaulieu JL (1997) Termination of the Last Glaciation in the Iberian Peninsula inferred from the Pollen sequence of Quintanar de la Sierra. Quat Res 48:205–214
Pérez A, Luzón A, Roc A, Soria A, Mayayo M, Sánchez JA (2002) Sedimentary facies distribution and genesis of a recent carbonate-rich saline lake: Gallocanta Lake. Iberian Chain, NE Spain. Sediment Geol 148:185–202
Queralt I, Julià R, Plana F, Bischoff JL (1997) A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain. Am Mineral 82:812–819
Roc AC (2003) Evolución medioambiental de las lagunas salino-carbonatadas durante el Holoceno en la Cuenca de Gallocanta (Aragón, NE de España). Estudio Sedimentológico y Palinológico. Unpublished PhD Thesis, University of Zaragoza, Spain, pp 1–452
Rodó X, Giralt S, Burjachs F, Comín F, Tenorio RG, Julià R (2002) High-resolution saline lake sediments as enhanced tools for relating proxy paleolake records to recent climatic data series. Sediment Geol 148:203–220
San Román J (2004) Establecimiento de las normas de explotación de la unidad hidrogeológica “Gallocanta” y la delimitación de los perímetros de protección de la laguna. Memoria del Ministerio de Medio Ambiente
Sheppard SMF, Schwarz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between metamorphic calcite and dolomite. Contrib Mineral Petrol 26:161–198
Schmidt M, Xeflide S, Botz R, Mann S (2005) Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation. Geochim Cosmochim Acta 69:4665–4674
Stuiver M (1975) Climate versus changes in 13C content of the organic component of lake sediments during the late Quaternary. Quat Res 5(2):251–262
Talbot MR (1990) A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem Geol (Isot Geosci Sect) 80:261–279
Talbot MR, Kelts K (1990) Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments. In: Kat BJ (ed) Lacustrine Basin exploration. Case Studies and Modern Analogs, vol 50. AAPG, pp 99–112
Tucker ME (1990) Dolomites and dolomitization models. In: Tucker ME, Wright VP, Dickson JAD (eds) Carbonate sedimentology. Blackwell, Oxford pp 365–400
Valero Garcés BL, Kelts K, Ito E (1995) Oxygen and carbon isotope trends and sedimentological evolution of a Meromictic and Saline Lacustrine System: the Holocene Medicine Lake Basin, North American Great Plains, USA. Palaeogeogr Palaeoclimatol Palaeoecol 117:253–278
Valero-Garcés BL, Zeroual E, Kelts K (1998) Arid phases in the western Mediterranean region during the Last Glacial Cycle reconstructed from lacustrine records. In: Benito G, Baker VR, Gregory KJ (eds) Paleohydrology and environmental change. Wiley, London, pp 67–80
Valero-Garcés BL, Delgado-Huertas A, Navas A, Machin J, Gonzalez-Samperiz P, Kelts K (2000) Quaternary palaeohydrological evolution of a playa lake; Salada Mediana, central Ebro Basin, Spain. Sedimentology 47(6):1135–1156
Valero Garcés BL, Martí C, García-Ruiz JM, González-Sampériz P, Lorente A, Begueira S, Navas A, Machín J, Delgado-Huertas A, Stevenson T, Basil D (2001) Late glacial and early Holocene paleohydrological and environmental change along a humid-arid transect from the Central Pyrenees to the Ebro Valley (Spain). Terra Nostra 3. In: Proceedings of 6th ELDP Workshop, Postdam
Van Lith Y, Vasconcelos C, Warthmann R, Martins JCF, McKenzie JA (2002) Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiology 485:35–49
Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67(3):378–390
Vasconcelos C, Judith A, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320
Veizer J, Hoefs J (1976) The nature of O18/O16 and C13/C18 secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395
Walters LJ Jr, Caypool GG, Choquette PW (1972) Reaction rates and 18O variation for the carbonate-phosphoric acid preparation method. Geochim Cosmochim Acta 36:129–140
Warren JK (2000) Dolomite, occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81
Wright DT (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol 126:147–157
Wright DT (2000) Benthic microbial communities and dolomite formation in marine and lacustrine environments—a new dolomite model. In: Glenn CR, Prevot LL, Lucas J (eds) Marine authigenesis; from global to microbial, vol 66. SEPM Spec. Publ, pp 7–20
Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008
Acknowledgments
We thank two anonymous reviewers for their valuable suggestions, which led to a considerable improvement of the manuscript. Miguel Angel García Vera, of the Ebro River Basin Authority, is gratefully acknowledged for giving us access to the climate data from the Gallocanta meteorological station. This research was supported by project CGL2004-02616/BTE of the Education and Science Ministry of Spain.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luzón, A., Mayayo, M.J. & Pérez, A. Stable isotope characterisation of co-existing carbonates from the Holocene Gallocanta lake (NE Spain): palaeolimnological implications. Int J Earth Sci (Geol Rundsch) 98, 1129–1150 (2009). https://doi.org/10.1007/s00531-008-0308-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00531-008-0308-1