Skip to main content
Log in

Seismically induced shale diapirism: the Mine d’Or section, Vilaine estuary, Southern Brittany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Pénestin section (southern Brittany) presents large regular undulations, commonly interpreted as evidence of periglacial pingos. It is an upper Neogene palaeoestuary of the Vilaine River reactivated during the middle Quaternary (middle terrace). It is incised into a thick kaolinitic saprolite and deformed by saprolite diapirs. This paper presents the arguments leading to a mechanistic interpretation of the deformations at Pénestin. Neither recent transpressive tectonics nor diagnostic evidence of periglacial pingo have been found despite evidence for a late paleo-permafrost. The major deformational process is shale diapirism, initially triggered by co-seismic water supply, with further loading and lateral spreading on an already deformed and deeply weathered basement, which allowed the shale diapirism to develop. Deformations are favoured by the liquefaction of the saprolite and a seaward mass movement and recorded, rather distant, effects of an earthquake (c. 280 ka B.P.) resulting from the progressive subsidence of the southern Armorican margin. These deformations triggered by an earthquake are similar to those induced by classical shale diapirism. They are probably common in tectonically active continental environments with shallow water table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bolton A, Maltman A (1998) Fluid-flow pathways in actively deforming sediments: the role of pore fluid pressure and volume change. Mar Petr Geol 15:281–297

    Article  Google Scholar 

  • Brault N, Guillocheau F, Proust J-N, Nalpas T, Brun J-P, Bonnet S, Bourquin S (2001) Le système fluvio-estuarien Pléistocène moyen-supérieur de Pénestin (Morbihan): une Paléo-Loire ? Bull Soc Geol France 172:563–572

    Article  Google Scholar 

  • Brodzikowski K, Van Loon AJ (1980) Sedimentary Deformations in Saalian Glaciolimnic Deposits near Wlostow (Zary area, Western Poland). Geol Mijnb 59:250–272

    Google Scholar 

  • Clark CD, Gibbard PL, Rose J (2004) Pleistocene glacial limits in England, Scotland and Wales. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations: extent and chronology, Part I; Europe. Developments in quaternary science. Elsevier, London, pp 47–82

    Chapter  Google Scholar 

  • De Gans W (1988) Pingo scars and their identification. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, London, pp 299–322

    Google Scholar 

  • Derakhshandi M, Rathje HE, Hazirbaba K, Mirhosseini SM (2007) The effect of plastic fines on the pore pressure generation characteristics of saturated sands. Soil Dyn. Earthquake Engine, Corrected Proof, Available online 2 August 2007 (in press)

  • Durand S (1960) Le Tertiaire de Bretagne. Etude stratigraphique, sédimentologique et tectonique. Mém Soc Géol Min Bretagne 1, 389p

  • Eisseman L (1981) Periglaziäre Prozesse und Permafroststrukturen aus sechs Kaltzeiten des Quartärs. Altenberger Naturwis. Forsch 1, 171p

  • Estéoule-Choux J (1983) Altérations et silicifications au tertiaire dans le Massif Armoricain. Géol. France 4:345–352

    Google Scholar 

  • Funnell BM (1995) Global sea-level and the (pen)insularity of late Cenozoic Britain. In: Preece RC (eds) Island Britain: a quaternary perspective, vol 96. Geological Society, London, Special Publ, pp 3–13

  • Grantz A, Plafker G, Kachadorian R (1964) Alaska’s good friday earthquake, March 17, 1964. A preliminary geologic evolution. Geol Surv Circular 491

  • Gapais D, Lagarde J-L, Le Corre C, Audren C, Jegouzo P, Casas Sainz A, Van Den Driessche J (1993) La zone de cisaillement de Quiberon. Témoin d’extension de la Chaîne Varisque en Bretagne méridonale au Carbonifère. CR Acad Sci Ser II 316:1123–1129

    Google Scholar 

  • Guillaume-Bruno S (1972) Le Plio-Quaternaire des Côtes du Morbihan.Etude sédimentologique et stratigraphique. Université d’Orsay, Thèse III cycle (PhD), 110p

  • Hardenbol J, Thierry J, Farley MB, Jaquin T, de Graciensky PC, Vail P (1998) Mesozoic and Cenozoic Sequence Chronostratigraphic chart. In: Mesozoic and Cenozoic Sequence Stratigraphy of European basins, SEPM spec. public., 60

  • Hasegawa HS, Basham PW (1989) Spatial correlation between seismicity and postglacial rebound in Eastern Canada. In: Gregersen S, Basham PW (eds) Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, Kluwer, Dordrecht, pp 483–500

  • Henriet JP, De Batist M, Verschuren M (1991) Early fracturing of Palaeogene clays, southernmost North Sea: relevance to mechanisms of primary hydrocarbon migration. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons (Spec. pub.). Eur Ass Petrol Geosci 1:217–227

  • Jégouzo S (2001) Analyse du recul de la falaise littirale de la mine d’Or. Applied Mast. Th. Géode, Lille 1 University, 90 p

  • Jenkins DG, Vincent A (1981) Periglacial features in the Bovey basin, south Devon. Proc Ussher Soc 5:201–205

    Google Scholar 

  • Klein C (1996) Du polycyclisme à l’acyclisme en géomorphologie, Ophyrys, Paris, 299 pp

  • Laurent M (1993) Datation de quartz de formation quaternaires, comparaison avec le paléomagnétisme. Thèse Muséum d’Histoire Naturelle, Paris, 104 pp

  • Lawrence D (1980) Some proprerties associated with kaolinitic soils. Geothechnical Group, PhD thesis, Cambridge University, 67 pp

  • Levret A, Backe JC, Cushing M (1994) Atlas of macroseismic maps for french earthquakes with their principal characteristics. Nat Hazards 10:19–46

    Article  Google Scholar 

  • Magyari Á, Musitz B, Csontos L, Unger Z, Van Vliet-Lanoë B (2005) Late quaternary neotectonics south of Lake Balaton (Somogy Hills), SW Hungary—evidence from field observations. Tectonophysics 410:43–62

    Article  Google Scholar 

  • Martirosyan A, Dutta U, Biswas N, Papageorgiou A, Combellick R (2002) Determination of site response in Anchorage, Alaska on the basis of spectral ratio methods. Earthq Spectra 18:85–104

    Article  Google Scholar 

  • Muir-Wood R, King GCP (1993) Hydrologic signatures of earthquake strain. J Geophys Res 98:22035–22068

    Article  Google Scholar 

  • Montgomery DR, Manga M (2003) Streamflow and water well responses to earthquakes. Science 300:2047–2049

    Article  Google Scholar 

  • Obermeier SF (1996) Using liquefaction—induced features for palaeoseismic analysis. In: McCalpin J (ed) Palaeoseismology, Academic Press, London, pp 331-396

  • Pissart A (1983) Remnants of periglacial mounds in the Hautes Fagnes, Belgique; structure and age of the ramparts. Geol Mijnb 62:551–555

    Google Scholar 

  • Powley DE (1999) Shale Domes Search and Discovery Article #60001, Amoco Production Company web report

  • Proust JN, Menier D, Guillocheau F, Guennoc P, Bonnet S (2001) Les vallées fossiles de la Baie de la Vilaine: Nature et évolution du prisme transgressif du Pléistocène armoricain. Bull Soc Geol France 172:737–749

    Article  Google Scholar 

  • Rivière A, Vernhet S (1962) Accidents périglaciaires dans la région de Pénestin, (Morbihan). CR Acad Sci Paris 255:744–746

    Google Scholar 

  • Ruxton BP (1985) The structure of some debris flows in Hong Kong. Geol Soc Hong Kong Bull 2:105–111

    Google Scholar 

  • Ruxton BP (2004) Contrasting regolith structures: hydroplastic undulations or fluidised piercement giving megalobes. In: Roach IC (eds) Regolith, CRC LEME, pp 311–315

  • Santiago M, Larsen MC (2001) Earthquake-induced landslide susceptibility in the San Juan Metropolitan Area, Puerto Rico: US Geological Survey, Open-file Rep 01–39, 1 CD

  • Schwan J, Van Loon AJ, Steenbeek R, Van Der Gaauw P (1980) Intraformational clay diapirism and extrusion in weichselian sediments at Ormehuj (Funen, Denmark). Geol Mijnb 59:241–250

    Google Scholar 

  • Schwarz T (1994) Ferricrete formation and relief inversion: an example from Central Sudan. In: Schwarz T, Germann K (eds) Lateritization processes and supergene ore formation. Catena 21:257–268

  • Seed HB, Idris IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div Proc Am Soc Civil Eng 97:1249–1273

    Google Scholar 

  • Seed HB, Wilson SD (1967) The turnagain heights landslide, Anchorage, Alaska. J Soil Mech Found Div ASCE 93:325–353

    Google Scholar 

  • Sibson RH (1981) Fluid flow accompanying faulting: field evidence and models. In: Simpson DW, Richards PG (eds) Earthquake prediction: an international review, vol 4. Maurice Ewing Ser., Washington DC, pp 593–603

  • Sibson RH, Moore J, Rankin RH (1975) Seismic pumping—a hydrothermal fluid transport mechanism. J Geol Soc Lond 131:653–659

    Article  Google Scholar 

  • Sibuet JC (1972) Histoire structurale du Golfe de Gascogne. PhD Thesis, Orsay University, 175 p

  • SIRENE (1996) Base de la macrosismicité française. CEA-IRSN-BRGM

  • Skempton AW (1953) The colloidal activity of clays. In: Proceedings of the 3rd international conference on soil mechanism and foundation engineering, Switzerland, vol 1, pp, 57–61

  • Strunk H (1983) Pleistocene diapiric upturnings of lignites and clayey sediments as periglacial phenomena in central Europe. 4th Intern. Permafrost Conf. Proc., Nat. Acadamic Press, Washington DC 1:1200–1204

  • Van Rensbergen P, Morley CK, Ang DW, Hoan TQ, Lam NT (1999) Structural evolution of shale diapirs from reactive rise to mud volcanism; 3D seismic data from the Baram Delta, offshore Brunei Darussalam. J Geol Soc 156:633–650

    Article  Google Scholar 

  • Van Vliet-Lanoë B (1998) Frost and soils: implications for paleosols, paleo-climates and stratigraphy. Catena 34:157–183

    Article  Google Scholar 

  • Van Vliet-Lanoë B (2005) LA PLANETE DES GLACES. Histoire et environnements de notre ère glaciaire. Vuibert, Paris, 470 p

  • Van Vliet-Lanoë B, Bonnet S, Hallégouët B, Laurent M (1997a) Neotectonic and seismic activity in the Armorican and Cornubian Massifs: regional stress field with glacio-isostatic influence? J O Geodyn 24:219–239

    Article  Google Scholar 

  • Van Vliet-Lanoë B, Hallégouët B, Monnier JL (eds) 1997b. The Quaternary of Brittany. Rev. Anthrop. Préhist. No. spec, University of Rennes 1:153 pp

  • Van Vliet-Lanoë B, Laurent M, Balescu S, Bahain JL, Falguères C, Field M, Keen D, Hallegouët B (2000) Middle Pleistocene raised beaches anomalies, English Channel and Dover Strait. Regional and Global Stratigraphic Implications. J O Geodyn 29:5–41

    Google Scholar 

  • Van Vliet-Lanoë B, Meilliez F, Maygari A (2004) Distinguishing between tectonic and periglacial deformations of Quaternary continental deposits in Europe. Glob Planet Ch 43:103–127

    Article  Google Scholar 

  • Van Vliet-Lanoë B, Vandenberghe N, Laignel B, Laurent M, Lauriat-Rage A, Louwye S, Mansy JL, Meilliez F, Mercier D, Hallégouët B, Lacquement F, Michel Y, Moguedet G (2002) Paleogeographic evolution of Northwestern Europe during the upper Cenozoïc. Geodiversitas 24:511–541

    Google Scholar 

  • Vendeville BC, Jackson MPA (1992a) The rise of diapirs during thin-skinned extension. Mar Petr Geol 9:331–353

    Article  Google Scholar 

  • Vendeville BC, Jackson MPA (1992b) The fall of diapirs during thin-skinned extension. Mar Petr Geol 9:354–371

    Article  Google Scholar 

  • Woith H, Wang R, Milkereit C, Zschau J, Maiwald U, Pekdeger A (2003) Heterogenous response of hydrogeological systems to the Izmit and Düzce (Turkey) earthquakes of 1999. Hydrol J 11:113–121

    Google Scholar 

  • Wyns R (1991) Evolution tectonique du bâti armoricain oriental au Cénozoïque d’après l’analyse des paléosurfaces continentales et des formations géologiques associées. Géol de la France 3:11–42

    Google Scholar 

  • Youd TL, Steidl JH, Nigbor RL (2004) Lessons learned and need for instrumented liquefaction sites. In: Soil Dynamics and Earthquake Engineering, vol 24. Elsevier, Amsterdam, pp 639–646

  • Zagwijn WH (1989) The Netherland during the tertiary and the quaternary: a case history of coastal lowland evolution. Geol Mijnb 68:107–120

    Google Scholar 

  • Ziegler PA (1992) European cenozoïc rift system. Tectonophysics 208:91–11

    Article  Google Scholar 

Download references

Acknowledgments

This paper Contribution No. 1046 of the IUEM, European Institute for Marine Studies (Brest, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Van Vliet-Lanoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Vliet-Lanoe, B., Hibsch, C., Csontos, L. et al. Seismically induced shale diapirism: the Mine d’Or section, Vilaine estuary, Southern Brittany. Int J Earth Sci (Geol Rundsch) 98, 969–984 (2009). https://doi.org/10.1007/s00531-007-0295-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0295-7

Keywords

Navigation