Skip to main content
Log in

“Granite tectonics” revisited: insights from comparison of K-feldspar shape-fabric, anisotropy of magnetic susceptibility (AMS), and brittle fractures in the Jizera granite, Bohemian Massif

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Jizera granite of the Krkonoše–Jizera Plutonic Complex, northern Bohemian Massif, contrasting patterns of magmatic K-feldspar fabrics and brittle fractures characterize different structural levels of the pluton. The uppermost exposed level at ∼800–1,100 m above sea level is dominated by flat foliation that overprints two steep foliations. In contrast, K-feldspar shape-fabric in an underground tunnel (∼660 m above sea level) shows complex variations in orientation and intensity. Magnetic fabric carried by coaxial contributions of biotite, magnetite, and maghemite is homogeneous along the examined section of the tunnel, and is decoupled from the K-feldspar fabric. The Jizera granite is crosscut by two regional sets of subvertical fractures (∼NE–SW and ∼NW–SE) and by near-surface exfoliation joints. The multiple fabrics are inferred to reflect a complex magmatic strain history at different structural levels of the pluton, bearing little or no relationship to the fracture network. In contrast to the original concept of Hans Cloos (“granite tectonics”), we conclude that no simple genetic relationship exists between fabrics and fractures in plutons. An alternative classification of fractures in plutons thus should avoid relationships to magmatic fabrics and should instead consist of cooling, syntectonic, uplift, and post-uplift fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aleksandrowski P, Mazur S (2002) Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:237–277

  • Aleksandrowski P, Kryza R, Mazur S, Zaba J (1997) Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geol Mag 134:727–739

    Article  Google Scholar 

  • Aleksandrowski P, Kryza R, Mazur S, Pin C, Zalasiewicz JA (2000) The Polish Sudetes: Caledonian or Variscan? Trans Roy Soc Edin: Earth Sci 90:127–146

    Google Scholar 

  • Arbaret L, Mancktelow NS, Burg JP (2001) Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow. J Struct Geol 23:113–125

    Article  Google Scholar 

  • Bahat D, Rabinovitch A (1988) Paleostress determination in a rock by a fractographic method. J Struct Geol 10:193–199

    Article  Google Scholar 

  • Bahat D, Grossenbacher K, Karasaki K (1999) Mechanism of exfoliation joint formation in granitic rocks, Yosemite National Park. J Struct Geol 21:85–96

    Article  Google Scholar 

  • Bahat D, Bankwitz P, Bankwitz E (2001a) Changes of crack velocities at the transition from the parent joint through the en echelon fringe to a secondary mirror plane. J Struct Geol 23:1215–1221

    Article  Google Scholar 

  • Bahat D, Bankwitz P, Bankwitz E (2001b) Joint formation in granite plutons: en echelon-hackle series on mirror fringes (example: South Bohemian Pluton, Czech Republic). Z Deutsch geol Ges 152:593–609

    Google Scholar 

  • Bahat D, Bankwitz P, Bankwitz E (2003) Preuplift joints in granites: evidence for subcritical and postcritical fracture growth. Geol Soc Am Bull 115:148–165

    Article  Google Scholar 

  • Bahat D, Rabinovitch A, Frid V (2005) Tensile fracturing in rocks. Springer, Berlin, pp 1–570

    Google Scholar 

  • Balk R (1937) Structural behavior of igneous rocks. Geol Soc Am Memoir 5:1–177

    Google Scholar 

  • Bankwitz P, Bankwitz E (2004a) The relationship of tilt and twist of fringe cracks in granite plutons. In: Cosgrove JW, Engelder T (eds) The initiation, propagation, and arrest of joints and other fractures. Geol Soc Lond Spec Publ 231:183–208

  • Bankwitz P, Bankwitz E (2004b) Bildungstiefe und Bildungszeitpunkt von frühen Klüften in Granitplutonen. Z geol Wiss 32:131–160

    Google Scholar 

  • Bankwitz P, Bahat D, Bankwitz E (2000) Granitklüftung—Kenntnisstand 80 Jahre nach Hans Cloos. Z geol Wiss 28:87–110

    Google Scholar 

  • Bankwitz P, Bankwitz E, Thomas R, Wemmer K, Kämpf H (2004) Age and depth evidence for pre-exhumation joints in granite plutons: fracturing during the early cooling stage of felsic rock. In: Cosgrove JW, Engelder T (eds) The initiation, propagation, and arrest of joints and other fractures. Geol Soc Lond Spec Publ 231:25–47

  • Barros CEM, Barbey P, Boullier AM (2001) Role of magma pressure, tectonic stress and crystallization progress in the emplacement of syntectonic granites. The A-type Estrela Granite Complex (Carajás Mineral Province, Brazil). Tectonophysics 343:93–109

    Article  Google Scholar 

  • Benn K, Paterson SR, Lund SP, Pignotta GS, Kruse S (2001) Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith. Phys Chem Earth 26:343–354

    Article  Google Scholar 

  • Bergbauer S, Martel SJ (1999) Formation of joints in cooling plutons. J Struct Geol 21:821–835

    Article  Google Scholar 

  • Bergbauer S, Martel SJ, Hieronymus CF (1998) Thermal stress evolution in cooling pluton environments of different geometries. Geophys Res Lett 25:707–710

    Article  Google Scholar 

  • Berger AR, Pitcher WS (1970) Structures in granitic rocks: a commentary and critique on granite tectonics. Proc Geol Soc Lond 81:41–461

    Google Scholar 

  • Borradaile G (2003) Statistics of Earth Science data: their distribution in space, time, and orientation. Springer, Berlin, pp 1–351

    Google Scholar 

  • Borradaile G, Kehlenbeck M (1996) Possible cryptic tectono-magnetic fabrics in ‘post-tectonic’ granitoid plutons of the Canadian Shield. Earth Planet Sci Lett 137:119–127

    Article  Google Scholar 

  • Borradaile G, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Sci Rev 42:49–93

    Article  Google Scholar 

  • Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernández F, Lüneburg CM, Auborg C, Jackson M (eds) Magnetic fabric: methods and application. Geol Soc Lond Spec Publ 238:299–360

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 95–112

  • Callahan CN, Markley MJ (2003) A record of crustal-scale stress: igneous foliation and lineation in the Mount Waldo Pluton, Waldo County, Maine. J Struct Geol 25:541–555

    Article  Google Scholar 

  • Cloos H (1922) Streckung und Rutschstreifen im Granit vom Zobten in Schlesien. Tektonik und Magma. Untersuchungen zur Geologie der Tiefen, Abh. Prenss. Geol. L. A. N. F. 89, Berlin, pp 103–109

  • Cloos H (1925) Einführung in die tektonische Behandlung magmatischer Erscheinungen (Granittektonik). 1. Das Riesengebirge in Schlesien. Borntraeger, Berlin, pp 1–194

    Google Scholar 

  • Cymerman Z, Piasecki MAJ, Seston R (1997) Terranes and terrane boundaries in the Sudetes, northeast Bohemian Massif. Geol Mag 134:717–725

    Article  Google Scholar 

  • Dobeš P, Jačková I, Čejková B, Klomínský J (2006) Paleofluids in hydrothermal veins in granites of the Bedřichov water tunnel (Jizerské hory Mts., Czech Republic)—preliminary stable isotope and fluid inclusion study. Min Polonica Spec Pap 28:54–56

    Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism, fundamentals and frontiers. Cambridge Studies in Magnetism, Cambridge University Press, Cambridge, pp 1–573

  • Duthou JL, Couturie J, Mierzejewski M, Pin C (1991) Dating a granite sample from the Karkonosze Mountains using the Rb/Sr whole rock isochron method. Przeglad Geol 39:75–78

    Google Scholar 

  • Ehlen J (1999) Fracture characteristics in weathered granites. Geomorphology 31:29–45

    Article  Google Scholar 

  • Gerla PJ (1988) Stress and fracture evolution in a cooling pluton: an example from the Diamond Joe stock, western Arizona, USA. J Volcanol Geoth Res 34:267–282

    Article  Google Scholar 

  • Hancock PL, Engelder T (1989) Neotectonic joints. Geol Soc Am Bull 101:1197–1208

    Article  Google Scholar 

  • Hladil J, Patočka F, Kachlík V, Melichar R, Hubačík M (2003) Metamorphosed carbonates of Krkonoše Mountains and Paleozoic evolution of Sudetic terranes (NE Bohemia, Czech Republic). Geol Carpath 54:281–297

    Google Scholar 

  • Hogan JP, Price JD, Gilbert MC (1998) Magma traps and driving pressure: consequences for pluton shape and emplacement in an extensional regime. J Struct Geol 20:1155–1168

    Article  Google Scholar 

  • Holzhausen GR (1989) Origin of sheet structure, 1. Morphology and boundary conditions. Eng Geol 27:225–278

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hrouda F (1994) A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys J Int 118:604–612

    Article  Google Scholar 

  • Hrouda F, Jelínek V, Hrušková L (1990) A package of programs for statistical evaluation of magnetic data using IBM-PC computers. EOS Transactions, AGU, San Francisco, pp 1289

    Google Scholar 

  • Hudson JA, Priest SD (1979) Discontinuities and rock mass geometry. Int J Rock Mech Mining Sci 16:339–362

    Article  Google Scholar 

  • Ildefonse B, Mancktelow NS (1993) Deformation around rigid particles: the influence of slip at the particle/matrix interface. Tectonophysics 221:345–359

    Article  Google Scholar 

  • Ildefonse B, Launeau P, Bouchez JL, Fernandez A (1992a) Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. J Struct Geol 14:73–83

    Article  Google Scholar 

  • Ildefonse B, Sokoutis D, Mancktelow NS (1992b) Mechanical interactions between rigid particles in a deforming ductile matrix. Analogue experiments in simple shear flow. J Struct Geol 14:1253–1266

    Article  Google Scholar 

  • Ildefonse B, Arbaret L, Diot H (1997) Rigid particles in simple shear flow: is their orientation periodic or steady-state? In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 177–185

  • Jackson M, Tauxe L (1991) Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Rev Geophys 29:371–376

    Google Scholar 

  • Ježek J, Melka R, Schulmann K, Venera Z (1994) The behaviour of rigid triaxial ellipsoidal particles in viscous flows-modeling of fabric evolution in a multiparticle system. Tectonophysics 229:165–180

    Article  Google Scholar 

  • Ježek J, Schulmann K, Segeth K (1996) Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows. Tectonophysics 257:203–221

    Article  Google Scholar 

  • Ježek J, Saic S, Segeth K, Schulmann K (1999) Three-dimensional hydrodynamical modelling of viscous flow around a rotating ellipsoidal inclusion. Comp Geosci 25:547–558

    Article  Google Scholar 

  • Jelínek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophys Geodet 22:50–62

    Article  Google Scholar 

  • Jelínek V (1981) Characterisation of magnetic fabric of rocks. Tectonophysics 79:63–67

    Article  Google Scholar 

  • Jelínek V, Pokorný J (1997) Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys Chem Earth 22:179–181

    Article  Google Scholar 

  • Knapp RB, Norton D (1981) Preliminary numerical analysis of processes related to magma crystallization and stress evolution in cooling pluton environments. Am J Sci 281:35–68

    Article  Google Scholar 

  • Klomínský J (1969) The Krkonoše–Jizera granitoid massif. Sb geol věd 15:1–134

    Google Scholar 

  • Klomínský J (ed) (2005) Geological and structural characterization of granitoids in water-plant tunnels in the Jizera Mountains. Final report, Radioactive Waste Repository Authority (SÚRAO), Prague, pp 1–159

  • Kozdrój W, Krentz O, Opletal M (eds) (2001) Geological map Lausitz-Jizera-Karkonosze (without Cenozoic sediments), 1:100,000. Sächsisches Landesamt für Umwelt und Geologie, Panstwowy Instytut Geologiczny, Česká geologická služba, Warszaw

  • Kröner A, Hegner E, Hammer J, Haase G, Bielicki KH, Krauss M, Eidam J (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids–significance for the evolution of the Variscan orogen in East-Central-Europe. Geol Rundsch 83:357–376

    Google Scholar 

  • Launeau P, Cruden AR (1998) Magmatic fabric acquisition in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. J Geophys Res 103:5067–5089

    Article  Google Scholar 

  • Majerowicz A (1986) Some selected problems concerning the tectonics of granitoids of the Strzegom-Sobotka massif (SW Poland). Geol Rundsch 75:625–634

    Article  Google Scholar 

  • Maluski H, Patočka F (1997) Geochemistry and 40Ar/39Ar geochronology of the mafic metavolcanic rocks from the Rýchory Mountains complex (west Sudetes, Bohemian Massif): paleotectonic significance. Geol Mag 134:703–716

    Article  Google Scholar 

  • Marheine D, Kachlík V, Maluski H, Patočka F, Zelazniewicz A (2002) The40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan tectonothermal development. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc Lond Spec Publ 201:133–155

  • Marre J (1986) The structural analysis of granitic rocks. North Oxford Academic Publishers, London, pp 1–123

    Google Scholar 

  • Mazur S (2002) Geology of the Karkonosze–Izera Massif: an overview. Min Soc Poland Spec Pap 20:22–34

    Google Scholar 

  • Mazur S, Aleksandrowski P (2001) The Teplá(?)/Saxothuringian suture in the Karkonosze–Izera massif, western Sudetes, central European Variscides. Int J Earth Sci 90:341–360

    Article  Google Scholar 

  • Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan orogen in Poland. Geol Q 50:89–118

    Google Scholar 

  • Mierzejewski MP (2002) Additional data and remarks to Hans Cloos work in the Karkonosze Mts. (Riesengebirge). Z geol Wiss 30:37–48

    Google Scholar 

  • Miller RB, Paterson SR (1994) The transition from magmatic to high-temperature solid-state deformation: implications from the Mount Stuart batholith, Washington. J Struct Geol 16:853–865

    Article  Google Scholar 

  • Müller A, Müller B, Behr HJ (2001) Structural contrasts in granitic rocks of the Lusatian Granodiorite Complex and the Erzgebirge, Germany—in commemoration of Hans Cloos. Z geol Wiss 29:521–544

    Google Scholar 

  • Nagata T (1961) Rock Magnetism. Maruzen, Tokyo, pp 1–350

    Google Scholar 

  • Park Y, Means WD (1996) Direct observation of deformation processes in crystal mushes. J Struct Geol 18:847–858

    Article  Google Scholar 

  • Parma J, Zapletal K (1991) CS-1 apparatus for measuring the temperature dependence of low-field susceptibility of minerals and rocks (in co-operation with the KLY-2 Kappabridge). Leaflet, Geofyzika Brno

    Google Scholar 

  • Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363

    Article  Google Scholar 

  • Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82

    Article  Google Scholar 

  • Paterson SR, Onezime J, Teruya L, Žák J (2003) Quadruple-pronged enclaves: their significance for the interpretation of multiple magmatic fabrics in plutons. J Virtual Explorer 10:15–30

    Google Scholar 

  • Patočka F, Pin C (2005) Sm-Nd and trace element evidence for heterogeneous igneous protoliths of Variscan mafic blueschists in the East Krkonoše Complex (West Sudetes, NE Bohemian Massif, Czech Republic). Geodin Acta 18:363–374

    Article  Google Scholar 

  • Pollard DD, Aydin A (1988) Progress in understanding jointing over the past century. Geol Soc Am Bull 100:1181–1204

    Article  Google Scholar 

  • Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, Cambridge, pp 1–502

  • Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Rock Mech Mining Sci 13:135–148

    Google Scholar 

  • Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Mining Sci 18:183–197

    Article  Google Scholar 

  • Rives T, Razack M, Petit JP, Rawnsley KD (1992) Joint spacing: analogue and numerical simulations. J Struct Geol 14:925–937

    Article  Google Scholar 

  • Román-Berdiel T, Pueyo-Morer EL (2000) Joints orientation related with the magmatic anisotropy in the Trives granitic massif (NW Spain). CR Earth Planet Sci 330:437–443

    Google Scholar 

  • Rosenberg CL (2001) Deformation of partially molten granite: a review and comparison of experimental and natural case studies. Int J Earth Sci 90:60–76

    Article  Google Scholar 

  • Rosenberg CL, Handy MR (2001) Mechanisms and orientation of melt segregation paths during pure shearing of a partially molten rock analog (norcamphor–benzamide). J Struct Geol 23:1917–1932

    Article  Google Scholar 

  • Schulmann K, Ježek J, Venera Z (1997) Perpendicular linear fabrics in granite: markers of combined simple shear and pure shear flows? In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 159–176

  • Segall P, Pollard DD (1983) Joint formation in the granitic rock of the Sierra Nevada. Geol Soc Am Bull 94:563–575

    Article  Google Scholar 

  • Segall P, McKee EH, Martel SJ, Turin BD (1990) Late Cretaceous age of fractures in the Sierra Nevada batholith, California. Geology 18:1248–1251

    Article  Google Scholar 

  • Sen Z, Kazi A (1984) Discontinuity spacing and RQD estimates from finite length scanlines. Int J Rock Mech Mining Sci 21:203–212

    Article  Google Scholar 

  • Slaby E, Götze J (2004) Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modeling—a case study from the Karkonosze pluton (SW Poland). Min Mag 68:561–577

    Article  Google Scholar 

  • Slaby E, Galbarczyk-Gasiorowska L, Baszkiewicz A (2002) Mantled alkali-feldspar megacrysts from the marginal part of the Karkonosze granitoid massif (SW Poland). Acta Geol Polonica 52:501–519

    Google Scholar 

  • Slaby E, Galbarczyk-Gasiorowska L, Seltmann R, Müller A (2007a) Alkali feldspar megacryst growth: geochemical modelling. Miner Petrol 89:1–29

    Article  Google Scholar 

  • Slaby E, Seltmann R, Kober B, Müller A, Galbarczyk-Gasiorowska L, Jeffries T (2007b) LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton–implications for the parental magma composition. Min Mag 71:193–217

    Article  Google Scholar 

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London, pp 1–217

    Google Scholar 

  • Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosci 5:1–23

    Google Scholar 

  • Wallis PF, King MS (1980) Discontinuity spacings in a crystalline rock. Int J Rock Mech Mining Sci 17:63–66

    Article  Google Scholar 

  • Werner T, Mazur S, Jelenska J (2000) Changing direction of magnetic fabric in a thrust unit: an example from the Karkonosze–Izera Massif (SW Poland). Phys Chem Earth 25:511–517

    Article  Google Scholar 

  • Winchester JA, Patočka F, Kachlík V, Melzer M, Nawakowski C, Crowley QG, Floyd PA (2003) Geochemical discrimination of metasedimentary sequences in the Krkonoše–Jizera terrane (west Sudetes, Bohemian Massif): paleotectonic and stratigraphic constraints. Geol Carpath 54:267–280

    Google Scholar 

  • Žák J, Schulmann K, Hrouda F (2005) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27:805–822

    Article  Google Scholar 

  • Žák J, Vyhnálek B, Kabele P (2006) Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif). Phys Earth Planet Int 157:286–310

    Article  Google Scholar 

  • Žák J, Klomínský J (2007) Magmatic structures in the Krkonoše–Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal–mechanical instabilities in a granitic magma chamber. J Volcanol Geoth Res 164:254–267

    Article  Google Scholar 

  • Žák J, Paterson SR, Memeti V (2007) Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geol Soc Am Bull 119:184–201

    Article  Google Scholar 

  • Zelazniewicz A (1997) The Sudetes as Palaeozoic orogen in central Europe. Geol Mag 134:691–702

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dov Bahat and Robert Miller for their very constructive reviews that helped us to improve the original manuscript. František Hrouda is gratefully acknowledged for discussions and help with the interpretation and measuring AMS in the laboratories of AGICO Ltd, Brno, Czech Republic. Vladimír Bělohradský is thanked for field assistance and help with underground mapping in the tunnels. Severočeské vodárny a kanalizace, Ltd are acknowledged for allowing us to access and work in the water-plant tunnels. The research was supported by the Radioactive Waste Repository Authority of the Czech Republic (SÚRAO) project “Geological and structural characterization of granitoids in the Bedřichov tunnel in the Jizera Mountains” (to Josef Klomínský), by the Czech Geological Survey Internal Research Project No. 3238 “Relationship between magmatic fabrics and fracture networks in plutons” (to Jiří Žák), and by the Ministry of Education, Youth and Sports of the Czech Republic Research Plan No. MSM0021620855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Žák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žák, J., Verner, K., Klomínský, J. et al. “Granite tectonics” revisited: insights from comparison of K-feldspar shape-fabric, anisotropy of magnetic susceptibility (AMS), and brittle fractures in the Jizera granite, Bohemian Massif. Int J Earth Sci (Geol Rundsch) 98, 949–967 (2009). https://doi.org/10.1007/s00531-007-0292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0292-x

Keywords

Navigation