Skip to main content
Log in

Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The scientific borehole Baden-Sooss penetrates a succession of Badenian (Langhian, Middle Miocene) sediments at the type locality of the Badenian, the old brickyard Baden-Sooss in the Vienna Basin. The sedimentary succession of the 102-m-cored interval consists of more than 95% bioturbated, medium-to-dark gray marly shales with carbonate contents between 11 and 25% and organic carbon contents between 0.35 and 0.65%. Biostratigraphic investigations on foraminifera (mainly lower part of Upper Lagenid Zone) and calcareous nannoplankton (standard zone NN5) indicate an early Badenian (Langhian) age. Cycles in carbonate content, organic carbon content, and magnetic susceptibility have been identified by power spectra analysis. Correlations between the three variables are extremely significant. Using cross-correlation, periods around 40 m correlate significantly with the 100 kyr−1 eccentricity cycle, the ∼20 m periods with the obliquity cycle, and the 15 to 11-m periods with both precession cycles. Wavelet transformation and decomposition of composite periodic functions were used to obtain the position of the cycle peaks in the profile. Cross-correlation with orbital cycles (La2004) dates the Baden-Sooss core between −14.379 ± 1 and −14.142 my ± 9 kyr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abels HA, Hilgen FJ, Krijgsman W, Kruk RW, Raffi I, Turko E, Zachariasse WJ (2005) Long-period orbital control on middle Miocene global cooling: integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20. doi:10.1029/2004PA001129

  • Abdul Aziz H, Di Stefano A, Foresi LM, Hilgen FJ, Iaccarino SM, Kuiper KF, Lirer F, Salvatorini G, Turco (2007) Integrated stratigraphy and 40Ar/39Ar chronology of early Middle Miocene sediments from DSDP Leg 42A, Site 372 (Western Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol (in press)

  • Baldi K, Hohenegger J, Rögl F, Rupp C, Pervesler P, Khatun M (2005) Ecology of benthic foraminifera in the drill section of the Badenian Stratotype at Baden-Soos (Middle Miocene, Lower Austria). In: 12th Congress RCMNS, 6–11 September 2005, Vienna, Abstract volume: 15–17

  • Berggren WA, Kent DV, Swisher CC III, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. Society of Sedimentary Geology (SEMP). Spec Publ 54:129–212

    Google Scholar 

  • Brix F, Plöchinger B (1988) Erläuterungen zu Blatt Wiener Neustadt. Geol Bundesanst 1–85

  • Bromley RG, Asgaard U (1975) Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bull Geol Soc Den 24:261–281

    Google Scholar 

  • Cicha I, Senes J (1968) Sur la position du Miocene de la Paratethys Central dans les cadre du Tertiaire de l’Europe. Geol Zbornik Geol Carp 19:95–116

    Google Scholar 

  • Cicha I, Rögl F, Rupp C, Ctyroka J (1998) Oligocene–Miocene foraminifera of the Central Paratethys. Abh Senckenberg-naturforsch Ges 549:1–325

    Google Scholar 

  • Ćorić S, Švabenicka L, Rögl F, Petrova P (2007) Stratigraphical position of Helicosphaera waltrans nannoplankton horizon (NN5, Lower Badenian) Joannea. Geologie und Paläontologie 9:17–19

    Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York, 639 pp

    Google Scholar 

  • Decker K (1996) Miocene tectonics at the Alpine–Carpathian junction and the evolution of the Vienna Basin. Mitt Ges Geol Bergbaustud Österr 41:33–44

    Google Scholar 

  • Decker K, Peresson H (1996) Tertiary kinematics in the Alpine–Carpathian–Pannonian system: links between thrusting, transform faulting and crustal extension. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic thrustbelts and basins of Central and Eastern Europe. EAGE Spec Publ 5:69–77

  • Deng C, Vidic NJ, Verosub KL, Singer MJ, Liu Q, Shaw J, Zhu R (2005) Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J Geophys Res 110:B03103

    Article  Google Scholar 

  • Ekdale AA, Mason TR (1988) Characteristic trace–fossil association in oxygen-poor sedimentary environments. Geology 16:720–723

    Article  Google Scholar 

  • Ferraz-Mello S (1981) Estimation of periods from unequally spaced observations. Astron J 86:619–624

    Article  Google Scholar 

  • Fornaciari E, Di Stefano A, Rio D, Negri A (1996): Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Meditterranean region. Micropaleontology 42:37–63

    Article  Google Scholar 

  • Frey RW, Curran AH, Pemberton GS (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:511–528

    Google Scholar 

  • Fuchs R, Stradner H (1977) Über Nannofossilien im Badenien (Mittelmiozän) der Zentralen Paratethys. Beitr Paläont Österr 2:1–58

    Google Scholar 

  • Fuchs T (1873) Erläuterungen zur geologischen Karte der Umgebung Wien. Geol Reichsanst Wien 1–47

  • Grill R (1941) Stratigraphische Untersuchungen mit Hilfe von Mikrofaunen im Wiener Becken und den benachbarten Molasseanteilen. Oel und Kohle 37:595–602

    Google Scholar 

  • Grill R (1943) Über mikropaläontologische Gliederungsmöglichkeiten im Miozän des Wiener Beckens. Mitt Reichsamt Bodenforsch Wien 6:33–44

    Google Scholar 

  • Guyodo Y, Gaillot P, Chanell JET (2000) Wavelet analysis of relative geomagnetic paleointensity at ODP Site 983. Earth Planet Sci Let 5666:1–15

    Google Scholar 

  • Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, Malden, 351 pp

    Google Scholar 

  • Hamilton W, Wagner L, Wessely G (2000) Oil and gas in Austria. Mitt Österr Geol Ges 92:235–262

    Google Scholar 

  • Handler R, Ebner F, Neubauer F, Hermann S, Bojar A-V, Hermann S (2006) 40Ar/39Ar dating of Miocene tuffs from Styrian part of the Pannonian Basin: an attempt to refine the basin stratigraphy. Geol Carpathica 57:483–494

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes. In: Wilgus CK et al (eds) Sea-level changes—an integrated approach. SEMP Spec Publ 42:71–108

  • Hilgen FJ, Krijgsman W, Langereis CG, Lourens LJ, Santarelli A, Zachariasse WJ (1995) Extending the astronomical (polarity) time scale into the Miocene. Earth Planet Sci Let 136:495–510

    Article  Google Scholar 

  • Hilgen FJ, Krijgsman W, Raffi I, Turco E, Zachariasse WJ (2000) Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibiscemi (Sicily, Italy). Mar Micropaleontol 38:181–211

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:483–487

    Article  Google Scholar 

  • Khatun M, Selge A, Hohenegger J, Wagreich M, Stingl K, Scholger R, Pervesler P, Rupp C (2005) Cyclostratigraphy in the Middle Miocene (Lower Badenian) of the southern Vienna Basin. Geophys Res Abstr 8:00840

    Google Scholar 

  • Kováč M, Baráth I, Harzhauser M, Hlavatý I, Hudáčková N (2004) Miocene depositional systems and sequence stratigraphy of the Vienna Basin. Cour Forsch-Inst Senckenberg 246:187–212

    Google Scholar 

  • Larrasoana JC, Roberts AP, Rohling EJ, Winklhofer M, Wehausen R (2003) Three million years of monsoon variability over the northern Sahara. Clim Dyn 21:689–698

    Article  Google Scholar 

  • Laskar J, Robulet P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285

    Article  Google Scholar 

  • Latta DK, Anastasio DJ, Hinnov LA, Elrick M, Kodama KP (2006) Magnetic record of Milankovitch rhythms in lithologically noncyclic marine carbonates. Geology 34:29–32

    Article  Google Scholar 

  • Linder A, Berchtold W (1976) Statistische Auswertung von Prozentzahlen. UTB Birkhäuser Verlag, Basel, 232 pp

    Google Scholar 

  • Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447–462

    Article  Google Scholar 

  • Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004a) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, London, pp 409–440

    Google Scholar 

  • Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004b) Orbital tuning calibrations and conversions for the Neogene Period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, London, pp 469–484

    Google Scholar 

  • Mader D, Cleaveland L, Bice DM, Montanari A, Koeberl C (2004) High-resolution cyclostratigraphic analysis of multiple climate proxies from a short Langhian pelagic succession in the Cònero Riviera, Ancona (Italy). Palaeogeogr Palaeoclimat Palaeoecol 211:325–344

    Article  Google Scholar 

  • Martini E (1971) Standard tertiary and quartenary calcareous nannoplankton zonation. In: Proceedings of the II planktonic conference, Ed Tecnoscienza Roma, pp 739–785

  • Mayer-Eymar K (1858) Versuch einer neuen Klassification der Tertiär-Gebilde Europa’s. Verhandlungen der allgem. Schweiz. Gesellschaft für die gesamten Naturwissenschaften bei ihrer Versammlung in Trogen 1857. J. Schläpfer, Trogen 70–71:165–199

    Google Scholar 

  • McBride EF, Picard MD (1991) Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), Northern Apennines, Italy. Palaios 6:281–290

    Article  Google Scholar 

  • Morlet J, Arens G, Fourgeau E, Girard D (1982) Wave propagation and sampling theory. 2. Sampling theory and complex waves. Geophys 47:203–221

    Article  Google Scholar 

  • Ohneiser C, Wilson G, Field B, Crundwell M (2006) Evidence for orbital pacing through the middle Miocene climatic deterioration from the Southwest Pacific. Geophys Res Abstr 8:05421

    Google Scholar 

  • Papp A, Cicha I, Seneš J, Steininger F (1978) Chronostratigraphie und Neostratotypen. Miozän der Zentralen Paratethys M4. Badenien. Chronostrat and Neostrat 6 (Bratislava), p 593

  • Papp A, Steininger F (1978) Holostratotypus des Badenien: Baden-Sooss. In: Papp A, Cicha I, Seneš J, Steininger F (eds) M4 Badenien (Moravien, Wielicien, Kosovien). Chronostrat and Neostrat 6:138–145 (Veda SAV, Bratislava)

  • Papp A, Turnovsky K (1953) Die Entwicklung der Uvigerinen im Vindobon (Helvet und Torton) des Wiener Beckens. J Geol Bundesanst 46:117–142

    Google Scholar 

  • Papp A, Grill R, Janoschek R, Kapounek J, Kollmann K, Turnovsky K (1968) Zur Nomenklatur des Neogens in Österreich – Nomenclature of the Neogene of Austria. Verh Geol Bundesanst 1968:9–27

    Google Scholar 

  • Piller WE, Harzhauser M (2005) The myth of the brackish Sarmatian Sea. Terra Nova 17:450–455

    Article  Google Scholar 

  • Piller WE, Egger H, Erhart CW, Gross M, Harzhauser M, Hubmann B, van Husen D, Krenmayr H-G, Krystyn L, Lein R, Lukeneder A, Mandl GW, Rögl F, Roetzel R, Rupp C, Schnabel W, Schönlaub HP, Summesberger H, Wagreich M, Wessely G (2004) Die stratigraphische Tabelle von Österreich 2004 (sedimentäre Schichtfolgen)

  • Press WH, Teukolsky SA, Veterling WT, Flannery BP (2002) Numerical recipes in C++. Cambridge University Press, Cambridge, pp 580–589

    Google Scholar 

  • Ratschbacher L, Frisch W, Linzer H-G, Merle O (1991) Lateral extrusion in the Eastern Alps, 2. Structural analysis. Tectonics 10:257–271

    Article  Google Scholar 

  • Rögl F, Ćorić S, Hohenegger J, Pervesler P, Roetzel R, Scholger R, Spezzaferri S, Stingl K (2007) Cyclostratigraphy and transgressions at the Early/Middle Miocene (Karpatian/Badenian) boundary in the Austrian Neogene basins (Central Paratethys). Austrian J. Earth Science (submitted)

  • Sauer R, Seifert P, Wessely G (1992) Guidebook to excursions in the Vienna Basin and the adjacent Alpine–Carpathian thrustbelt in Austria. Mitt Österr Geol Ges 85:1–264

    Google Scholar 

  • Schaffer FX (1927) Der Begriff der “miozänen Mediterranstufen” ist zu streichen. Verh Geol Bundesanst 1927:86–88

    Google Scholar 

  • Schmieder F (2006) Magentic signals in Plio–Pleistocene sediments of the South Atlantic: implications for chronostratigraphy and paleoceanography. Geophys Res Abstr 8:07269

    Google Scholar 

  • Schulz M, Berger WH, Sarnthein N, Grootes PM (1999) Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys Res Lett 26:3385–3388

    Article  Google Scholar 

  • Seifert P (1996) Sedimentary-tectonic development and Austrian hydrocarbon potential of the Vienna Basin. In: Wessely G., Liebl W (eds) Oil and gas in Alpidic thrustbelts and basins of Central and Eastern Europe. EAGE Spec Publ 5:331–341

  • Selge A (2005) Zyklostratigraphie anhand mineralmagnetischer Parameter am Bohrkern Sooß aus dem mittleren Badenium (Mittel Miozän)/Baden (Wiener Becken, Österreich). Dipl thesis, University of Leoben, 70 pp

  • Shevenell AE, Kenett JP, Lea DW (2004) Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science 305:1766–1770

    Article  Google Scholar 

  • Smith AB, Crimes TP (1983) Trace fossils formed by heart urchins—a study of Scolicia and related traces. Lethaia 16:79–92

    Article  Google Scholar 

  • SPSS 15.0 for Windows (2006) Release 15.0.0. SPSS Inc.

  • Steininger FF, Wessely G (2000) From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene basin evolution in Austria. Mitt Österr Geol Ges 92:95–116

    Google Scholar 

  • Stradner H, Fuchs R (1978) Das Nannoplankton in Österreich. In: Papp A, Cicha I, Seneš J, Steininger F (eds) M4 Badenien (Moravien, Wielicien, Kosovien). Chronostrat and Neostrat 6:489–531 (Veda SAV, Bratislava)

  • Švábenická L (2002) Calcareous nannofossils of the upper Karpatian and lower Badenian deposits in the Carpathian Foredeep, Moravia (Czech Republic). Geol Carp 53:197–210

    Google Scholar 

  • Strauss PE, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carp 57:185–197

    Google Scholar 

  • Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Wagreich M, Schmid HP (2002) Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova 14:163–168

    Article  Google Scholar 

  • Weissenbäck M (1996) Lower to Middle Miocene sedimentation model of the central Vienna Basin. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. EAGE Spec Publ 5:255–363

  • Yamazaki T, Oda H (2002) Orbital influence on Earth’s magnetic field: 100,000-year periodicity in inclination. Science 295:2435–2438

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey, 63 pp

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Austrian Science Fund (FWF, projects P13743-BIO, P 13740-GEO, P16793-B06, P 18203-N10), the Austrian Oriental Society Hammer-Purgstall, and the OAD, Austrian Exchange Service. We thank Robert Scholger (University Leoben) and Karl Stingl (University Vienna) for assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hohenegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohenegger, J., Ćorić, S., Khatun, M. et al. Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core. Int J Earth Sci (Geol Rundsch) 98, 915–930 (2009). https://doi.org/10.1007/s00531-007-0287-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0287-7

Keywords

Navigation