Skip to main content
Log in

Mesoproterozoic (1.47–1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U–Pb dating of a suite of massif-type anorthosite in S. Sweden

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Jönköping Anorthositic Suite (JAS) in S. Sweden has characteristics typical for (Proterozoic) massif-type anorthosites. The interstitial liquid of these plagioclase-porphyritic rocks solidified at 1,455 ± 6 Ma, as determined by U–Pb isotope analysis of baddeleyite. The JAS developed during a regional 1.47–1.44 event in Fennoscandia that generated widespread mafic magmatism (basalts, and diabase dykes and sills) in the north and emplacement of felsic plutons in the south. The event of 1.47–1.44 Ga magmatism in Fennoscandia largely coincides in age with dynamic high-grade metamorphism in SW Sweden and was probably related to convergent active-margin processes during the Danopolonian orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åhäll K-I (2001) Åldersbestämning av svårdaterade bergarter i sydöstra Sverige. SKB R-01–60:5–28

    Google Scholar 

  • Åhäll K-I, Connelly JN (1998) Intermittent 1.53–1.13 Ga magmatism in the western Baltica; age constraints and correlations within a postulated supercontinent. Precambrian Res 92:1–20

    Article  Google Scholar 

  • Åhäll K-I Larson SÅ (2000) Growth-related 1.86–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events. GFF 122:193–206

    Google Scholar 

  • Åhäll K-I, Persson P-O, Skiöld T (1995) Westward accretion of the Baltic Shield: implications from the 1.6 Ga Åmål-Horred Belt, SW Sweden. Precambrian Res 70:235–251

    Article  Google Scholar 

  • Åhäll K-I, Cornell DH, Armstrong R (1998) Ion probe zircon dating of metasedimentary units across the Skagerrak: new constraints for early Mesoproterozoic growth of the Baltic Shield. Precambrian Res 87:117–134

    Article  Google Scholar 

  • Åhäll K-I, Connelly JN, Brewer TS (2000) Episodic rapakivi magmatism due to distal orogenesis?: Correlation of 1.69–1.50 Ga orogenic and inboard, “anorogenic” events in the Baltic Shield. Geology 28:823–826

    Article  Google Scholar 

  • Alviola R, Johansson BS, Rämö OT, Vaasjoki M (1999) The Proterozoic Ahvenisto rapakivi granite-massif-type anorthosite complex, south-eastern Finland; petrography and U–Pb chronology. Precambrian Res 95:89–107

    Article  Google Scholar 

  • Amantov A, Laitakari I, Poroshin Y (1996) Jotnian and Postjotnian: sandstones and diabases in the surroundings of the Gulf of Finland. Geol Surv Finl Spec Paper 21:99–113

    Google Scholar 

  • Amelin YV, Larin AM, Tucker RD (1997) Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contrib Mineral Petrol 127:353–368

    Article  Google Scholar 

  • Andersen T, Griffin WL, Jackson SE, Knudsen T-L, Pearson NJ (2004) Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73:289–318

    Article  Google Scholar 

  • Andersson UB (1997) The sub-Jotnian Strömsbro granite complex at Gävle, Sweden. GFF 119:159–167

    Google Scholar 

  • Andersson JL, Morrison J (2005) Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica. Lithos 80:45–60

    Article  Google Scholar 

  • Andersson J, Söderlund U, Cornell D, Johansson L, Möller C (1999) Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden, SW Baltic Shield: constraints from a Mesoproterozoic granite intrusion. Precambrian Res 98:151–171

    Article  Google Scholar 

  • Andersson J, Möller C, Johansson L (2002a) Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Res 114:121–147

    Article  Google Scholar 

  • Andersson UB, Neymark LA, Billström K (2002b) Petrogenesis of Mesoproterozoic (Subjotnian) rapakivi complexes of central Sweden: implications from U–Pb zircon ages, Nd, Sr and Pb isotopes. Trans R Soc Edinb Earth Sci 92(3–4):201–228

    Google Scholar 

  • Ashwal LD (1993) Anorthosites. Springer, Berlin, p 422

    Google Scholar 

  • Austin Hegardt E, Cornell DH (2004) Pressure, temperature and timing of metamorphism to constrain tectonic models for the Sveconorwegian Province of Southwestern Sweden. Geol Surv Sweden Rep 4:10–11

    Google Scholar 

  • Austin Hegardt E, Cornell D, Claesson L, Simakov S, Hannah J (2005) Eclogites in the central part of the Sveconorwegian Eastern Segment of the Baltic Shield: support for an extensive eclogite terrane. GFF 127:221–232

    Google Scholar 

  • Berglund J (1997) Compressional and extensional ductile shearing along a terrane boundary in south-western Sweden. In: J Berglund 1997: Mid-Proterozoic evolution in south-western Sweden. Ph.D. thesis, Göteborg University

  • Berthelsen A (1980) Towards a palinspastic tectonic analysis of the Baltic Shield. In: Cogné J, Slansky M (eds) Geology of Europe from Precambrian to Post-Hercynian Sedimentary Basins. Int Geol Congr Colloq C6, Paris, pp 5–21

    Google Scholar 

  • Bogdanova SV, Page LM, Skridlaite G, Taran LN (2001). Proterozoic tectonothermal history in the western part of the East European Craton: 40Ar/39Ar geochronological constraints. Tectonopysics 339:39–66

    Article  Google Scholar 

  • Bogdanova SV, Gorbatschev R, Grad M, Janik T, Guterch A, Kozlovskaya E, Motuza G, Skridlaite G, Starostenko V, Taran L, EUROBRIDGE, Polonaise Working Groups (2006) EUROBRIDGE: new insights into the geodynamic evolution of East European Craton. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics. Geol Soc Lond Mem 32:599–625

  • Čečys A, Bogdanova S, Janson C, Bibikova E, Kornfält K-A (2002) The Stenshuvud and Tåghusa granitoids: new representatives of Mesoproterozoic magmatism in southern Sweden. GFF 124:149–162

    Google Scholar 

  • Christoffel C, Connelly JN, Åhäll K-I (1999) Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. Precambrian Res 98:173–195

    Article  Google Scholar 

  • Claesson S, Kresten P (1997) The anorogenic Noran granite––a Mesoproterozoic rapakivi intrusion in south-central Sweden. GFF 119:115–122

    Google Scholar 

  • Claesson S, Sundblad K, Ryka W, Moczydlowska M, Reinfrank R (1995) Proterozoic ages from the Precambrian of Poland––results and implications. In: Glebovitsky VA, Kotov AB (eds) Precambrian of Europe: stratigraphy, structure, evolution and mineralization. MAEGS meeting, St. Petersburg 339, pp 1–18

  • Connelly JN, Berglund J, Larson SÅ (1996) Thermotectonic evolution of the Eastern Segment of SW Sweden; tectonic constraints from U–Pb geochronology. In: Brewer TS (ed) Precambrian crustal evolution in the North Atlantic Regions. Geol Soc, London Spec Publ 112:297–313

  • Dörr W, Belka Z, Marheine D, Schastok J, Valverde-Vaquero P, Wiszniewska J (2002) U–Pb and Ar–Ar geochronology of anorogenic granite magmatism of Mazury complex, NE Poland. Precambrian Res 119:101–120

    Article  Google Scholar 

  • Emslie RF (1978) Anorthosite massifs, rapakivi granites, and late proterozoic rifting of North America. Precambrian Res 7:61–98

    Article  Google Scholar 

  • Emslie RF (1980) Geology and petrology of the Harp Lake Complex, central Labrador: an example of Elsonian magmatism. Geol Surv Can Bull 293:136

    Google Scholar 

  • Gorbatschev R, Solyom Z, Johansson I (1979) The Central Scandinavian Dolerite Group in Jämtland, central Sweden. Geol Fören Stockholm Förh 101:177–190

    Google Scholar 

  • Gower CF, Tucker RD (1994) Distribution of pre-1400 Ma crust in the Grenville province: Implications for rifting in Laurentia–Baltica during geon 14. Geology 22:827–830

    Article  Google Scholar 

  • Hageskov B, Pedersen S (1988) Rb–Sr age determination of the Kattsund–Koster dyke swarm in the Ostfold–Marstrand belt of the Sveconorwegian Province, W Sweden–SE Norway. Bull Geol Soc Denmark 37:51–61

    Google Scholar 

  • Hansen BT, Lindh A (1991) U–Pb zircon age of the Görbjörnarp syenite in Skåne, southern Sweden. Geol Fören Stockholm Förh 113:335–337

    Google Scholar 

  • Hellström FA, Johansson Å, Larson S-Å (2004) Age and emplacement of late Sveconorwegian monzogabbroic dykes, SW Sweden. Precambrian Res 128:39–55

    Article  Google Scholar 

  • Hoffman PF (1989) Speculations on Laurentia’s first gigayear (2.0–1.0 Ga). Geology 17:135–138

    Article  Google Scholar 

  • Högdahl K, Andersson UB, Eklund O (2004) The Transscandinavian Igneous Belt in Sweden: a review of its character and evolution. Geol Surv Finl Spec Paper 125, p 37

  • Hubbard FH (1975) The Precambrian crystalline basement of southwestern Sweden. The geology and petrogenitic development of the Varberg region. Geol Fören Stockholm Förh 97:223–236

    Google Scholar 

  • Johansson Å (1990) Age of the Önnestad syenite and some gneissic granites along the southern part of the Protogine Zone, southern Sweden. In: CF Gower T Rivers, B Ryan (eds) Mid-Proterozoic Laurentia–Baltica. Geol Ass Canada Spec Paper 38:131–148

  • Johansson L, Lindh A, Möller C (1991) Late Sveconorwegian (Grenville) high-pressure granulite facies metamorphism in southwest Sweden. J Metamorph Geol 9:283–292

    Article  Google Scholar 

  • Johansson Å, Meier M, Oberli F, Wikman H (1993) The early evolution of the Southwest Swedish Gneiss Province: geochronological and isotopic evidence from southernmost Sweden. Precambrian Res 64:361–388

    Article  Google Scholar 

  • Johansson L, Möller C, Söderlund U (2001) Geochronology of eclogite facies metamorphism in SW Sweden. Precambrian Res 106:261–275

    Article  Google Scholar 

  • Johansson Å, Bogdanova S, Claesson S, Taran L (2004) Gneisses and granitoids of Bornholm [Abstract] in the 26th Nordic Geological Winter Meeting. GFF 126: 24

    Google Scholar 

  • Johansson Å, Bogdanova S, Čečys A (2006) A revised geochronology for the Blekinge Province, southern Sweden. GFF 128:273–352

    Google Scholar 

  • Karlstrom KE, Åhäll K-I, Harlan SS, Williams ML, McLelland J, Geissman JW (2001) Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Res 111:5–30

    Article  Google Scholar 

  • Kornfält K-A, Vaasjoki M (1999) U–Pb zircon datings of Småland and Karlshamn granites from southeasternmost Sweden. Geol Surv Sweden C 831:32–41

    Google Scholar 

  • Lafrance B, John BE, Scoates JS (1996) Syn-emplacement recrystallization and deformation microstructures in the Poe Mountain anorthosite, Wyoming. Contrib Mineral Petrol 122:431–440

    Article  Google Scholar 

  • Larson SÅ, Berglund J (1995) Map of the solid rocks, Ulricehamn SE. Geol Surv Sweden Af, p 178

  • Larson SÅ, Stigh J, Tullborg E-L (1986) The deformation history of the eastern part of the southwest Swedish gneiss belt. Precambrian Res 31:237–257

    Article  Google Scholar 

  • Larson SÅ, Stigh J, Lind G (1998) Constraints for a structural subdivision of the Southwest Scandinavian Domain in Sweden. GFF 120:85–90

    Google Scholar 

  • Larsson D, Söderlund U (2005) Lu–Hf apatite geochronology of mafic cumulates: an example from a Fe–Ti-mineralization at Smålands Taberg, southern Sweden. Chem Geol 224:201–211

    Article  Google Scholar 

  • Longhi J (2005) A mantle or mafic crustal source for Proterozoic anorthosites? Lithos 83:183–198

    Article  Google Scholar 

  • Longhi J, Fram MS, Vander Auwera J, Montieth JN (1993) Pressure effects, kinetics, and rheology of anorthositic and related magmas. Am Mineral 78:1016–1030

    Google Scholar 

  • Ludwig KR (2003) A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronological Center (2003) (Special Publication No. 4), p 75

  • Lundström I, Persson P-O, Ahl M (2002) Ages of post-tectonic dyke porphyries and breccias in Bergslagen, south-central Sweden. Geol Surv Sweden C 834:43–49

    Google Scholar 

  • Lundqvist L (1996) 1.4 Ga mafic–felsic magmatism in the southern Sweden; a study of the Axamo Dyke Swarm and a related Anorthosite-Gabbro. In: Ph.D. thesis for Licentiate Degree, Göteborg University

  • McLelland JM (1989) Crustal growth associated with anorogenic, mid-Proterozoic anorthosite massifs in northeastern North America. Tectonophysics 161:331–341

    Article  Google Scholar 

  • Möller C (1998) Decompressed eclogites in the Sveconorwegian (-Grenvillian) orogen of SW Sweden: petrology and tectonic implications. J Metamorph Geol 16:641–656

    Article  Google Scholar 

  • Möller C, Söderlund U (1997a) Sveconorwegian high-grade regional reworking in the Eastern Segment, SW Sweden: cause, character, and consequences. GFF 119:235–254

    Google Scholar 

  • Möller C, Söderlund U (1997b) Age constraints on the regional deformation within the Eastern Segment, S Sweden: Late Sveconorwegian granite dyke intrusion and metamorphic-deformational relations. GFF 119:1–12

    Google Scholar 

  • Möller C, Andersson J, Claeson D (2005) Ion probe dating of complex zircon in high-grade gneisses, southeast Sveconorwegian Province: constraints for metamorphism and deformation. Geol Surv Sweden Rep 2005 35:59

    Google Scholar 

  • Möller C, Andersson A, Lundqvist I, Hellström F (2007) Linking deformation, migmatite formation and zircon U–Pb geochronology in polymetamorphic orthogneisses, Sveconorwegian Province, Sweden. J Metamorphic Geol 25:727–750

    Article  Google Scholar 

  • Morse SA (1982) A partisan review of Proterozoic anorthosites. Am Mineral 67:1087–1100

    Google Scholar 

  • Morse SA (2006) Labrador massif anorthosites: chasing the liquids and their sources. Lithos 89:202–221

    Article  Google Scholar 

  • Motuza G, Čečys A, Kotov AB, Salnikova EB (2006) The Zemaiciu Naumiestis granitoids: new evidences for Mesoproterozoic magmatism in western Lithuania. GFF 128:243–254

    Google Scholar 

  • Nyman MW, Karlstrom KE, Kirby E, Graubard CM (1994) Mesoproterozoic contractional orogeny in western North America: evidence from ca. 1.4 Ga plutons. Geology 22:901–904

    Article  Google Scholar 

  • Nyström JO (2004) Geochemistry, origin and tectonic setting of the Jotnian basalts in central Sweden. Final report, Project 03–1116/2001. Geol Surv Sweden, p 34

  • Obst K, Hammer J, Katzung G, Korich D (2004) The Mesoproterozoic basement in the southern Baltic Sea: insights from the G 14-1 off-shore borehole. Int J Earth Sci 93:1–12

    Article  Google Scholar 

  • Page LM, Stephens MB, Wahlgren C-H (1996) 40Ar/39Ar geochronology in the Eastern segment of the Sveconorwegian Orogen, south-central Sweden. In: TS Brewer (ed): Precambrian crustal evolution in the North Atlantic regions. Spec Publ Geol Soc London 112:315–330

  • Park RG, Åhäll K-I, Boland MP (1991) The Sveconorwegian shear-zone network of SW Sweden in relation to mid-Proterozoic plate movements. Precambrian Res 49:245–260

    Article  Google Scholar 

  • Persson AI (1999) Absolute (U–Pb) and relative age determinations of intrusive rocks in the Ragunda rapakivi complex, central Sweden. Precambrian Res 95:109–127

    Article  Google Scholar 

  • Rämö OT, Haapala I (1995) One hundred years of Rapakivi Granite. Mineral Petrol 52:129–185

    Article  Google Scholar 

  • Rämö OT, Huhma H, Kirs J (1996) Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton. Precambrian Res 79:209–226

    Article  Google Scholar 

  • Rämö OT, Mänttäri I, Kohonen J, Upton BGJ, Luttinen AV, Lindqvist V, Lobaev V, Cuney M, Sviridenko LP (2005) Mesoproterozoic CFB magmatism in the Lake Ladoga basin, Russian Karelia. Abstract 5:th International Dyke Conference

  • Robinson P, Terry MP, Carswell DA, van Roermund H, Krogh TE, Root D, Tucker RD, Solli A (2003) Tectonostratigraphic setting, structure, and petrology of HP and UHP metamorphic rocks and Garnet Peridotites in the Western Gneiss Region, More and Romsdal, Norway. Nor Geol Unders, Trondheim, p 142

  • Romer RL (1996) Contiguous Laurentia and Baltica before the Grenvillian–Sveconorwegian orogeny? Terr Nova 8:173–181

    Article  Google Scholar 

  • Schärer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350

    Article  Google Scholar 

  • Scherstén A, Larson SÅ, Cornell DH, Stigh J (2004) Ion probe dating of a migmatite in SW Sweden: the fate of zircon in crustal processes. Precambrian Res 130:251–266

    Article  Google Scholar 

  • Scoates JS (2000) The plagioclase––magma density paradox re-examined and the crystallization of Proterozoic Anorthosites. J Petrol 41:627–649

    Article  Google Scholar 

  • Scoates JS, Chamberlain KR (1995) Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: petrological consequences and U–Pb ages. Am Mineral 80:1317–1327

    Google Scholar 

  • Scoates JS, Chamberlain KR (1997) Orogenic to post-orogenic origin for the 1.76 Ga Horse Creek Anorthosite complex, Wyoming, USA. J Geol 105:331–343

    Article  Google Scholar 

  • Söderlund U (1996) Conventional U–Pb multigrain dating vs single zircon evaporation dating of complex zircons from a pegmatite in the high-grade gneisses of southwestern Sweden. Lithos 38:93–105

    Article  Google Scholar 

  • Söderlund U, Johansson L (2002) A simple way to extract baddeleyite (ZrO2). Geochem Geophys Geosyst 3(2):doi:101029/2001GC000212

  • Söderlund U, Ask R (2006) Mesoproterozoic bimodal magmatism along the Protogine Zone, S Sweden: three magmatic pulses at 1.56, 1.22 and 1.205 Ga, and regional implications. GFF 128:303–310

    Google Scholar 

  • Söderlund U, Möller C, Andersson J, Johansson L, Whitehouse M (2002) Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking. Precambrian Res 113:193–225

    Article  Google Scholar 

  • Söderlund P, Söderlund U, Möller C, Gorbatschev R, Rodhe A (2004a) Petrology and ion microprobe U–Pb chronology applied to a metabasic intrusion in southern Sweden: a study on zircon formation during metamorphism and deformation. Tectonics 23:1–16

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004b) The decay constant of 176Lu determined from Lu–Hf and U–Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Söderlund U, Isachsen C, Bylund G, Heaman L, Patchett PJ, Vervoort JD, Andersson UB (2005) U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contrib Mineral Petrol 150:174–194

    Article  Google Scholar 

  • Söderlund U, Elming S-Å, Ernst R, Schissel D (2006) The Central Scandinavian Dolerite Group––protracted hotspot activity or back-arc magmatism? Constraints from U–Pb baddeleyite geochronology and Hf isotopic data. Precambrian Res 150:136–152

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of Terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommision on Geochronology Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stephens MB, Wahlgren C-H, Weijermars R, Cruden AR (1996) Left-lateral transpressive deformation ant its tectonic implications, Sveconorwegian orogen, Baltic Shield, southwestern Sweden. Precambrian Res 79:261–279

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Sundblad K, Mansfeld J, Motuza G, Ahl M, Claesson S (1994) Geology, geochemistry and age of Cu-Mo-bearing granite at Kabeliai, Southern Lithuania. Mineral Petrol 50:43–57

    Article  Google Scholar 

  • Suominen V (1991) The chronostratigraphy of southwestern Finland with special reference to Postjotnian and Subjotnian diabases. Geol Surv Finl Bull 356:106

    Google Scholar 

  • Tucker RD, Krogh TE, Råheim A (1990) Proterozoic evolution and age-province boundaries in the central part of the Western Gneiss Region, Norway: results of U–Pb dating of accessory minerals from Trondheimsfjord to Geiranger. In Gower CF, Ryan B, Rivers T (eds) Middle Proterozoic geology of the southern margin of Proto Laurentia-Baltica. Geol Ass Can Spec Paper 38:149–173

  • Vaasjoki M (1977) Rapakivi granites and other postorogenic rocks in Finland. Their age and the lead isotopic composition of certain associated galena mineralizations. Geol Surv Finl Bull 294:64

    Google Scholar 

  • Wahlgren C-H, Heaman LM, Kamo S, Ingvald E (1996) U–Pb baddeleyite dating of dolerite dykes in the eastern part of the Sveconorwegian orogen, south-central Sweden. Precambrian Res 79:227–237

    Article  Google Scholar 

  • Wang X-D, Page LM, Lindh A (1996) 40Ar/39Ar geochronological constraints from the southeasternmost part of the eastern segment of the Sveconorwegian orogen: implications for timing of granulite-facies metamorphism. GFF 118:1–8

    Google Scholar 

  • Wang J-H, Yin A, Harrsion TM, Grove M, Zhang Y-Q, Xie G-H (2001) A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet Sci Lett 188:123–133

    Article  Google Scholar 

  • Welin E (1994) Isotopic investigations of Proterozoic igneous rocks in south-western Sweden. Geol Fören Stockholm Förh 116:75–86

    Google Scholar 

  • Welin E, Lundqvist T (1984) Isotopic investigations of the Nordingrå rapakivi massif, north-central Sweden. Geol Fören Stockholm Förh 106:41–49

    Google Scholar 

  • Wiebe RA (1979) Evidence for unusually feldspathic liquids in the Nain complex, Labrador. Am Mineral 75:1–12

    Google Scholar 

  • Windley BF (1993) Proterozoic anorogenic magmatism and its orogenic connections. J Geol Soc Lond 150:39–50

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jimmy Stigh and David Cornell for valuable comments on an early version of this manuscript, and Sven Åke Larson for introducing LB to the field area. Lena Lundqvist is thanked for discussions on various aspects of the JAS and ADS. Karin Appelquist assisted in the field and Johan Hogmalm with chemical analysis. Sarah Mell introduced LB to Mapinfo. This research was sponsored by grants from the Wilhelm and Martina Lundgrens Vetenskapsfond, Stiftelsen Lars Hiertas Minne, the Swedish Research Council (to US), and via a grant (60–1159/2002) from the Geological Survey of Sweden to Sven Åke Larson. This paper was significantly improved by journal reviews of Fernando Corfu and Lew Ashwal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linus Brander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brander, L., Söderlund, U. Mesoproterozoic (1.47–1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U–Pb dating of a suite of massif-type anorthosite in S. Sweden. Int J Earth Sci (Geol Rundsch) 98, 499–516 (2009). https://doi.org/10.1007/s00531-007-0281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0281-0

Keywords

Navigation