Skip to main content
Log in

Cordilleran Intermontane thermotectonic history and implications for neotectonic structure and petroleum systems, British Columbia, Canada

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson RG, Resnick J, Russell JK, Woodsworth GJ, Villeneuve ME, Grainger NC (2001) The Cheslatta lake suite: Miocene mafic, alkaline magmatism in central British Columbia. Can J Earth Sci 38:697–717

    Article  Google Scholar 

  • Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere.: a global study. J Geophys Res 106:16387–16414. doi:10.1029/2000JB900439

    Article  Google Scholar 

  • Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a maturity parameter: applications and limitations. ACS Symposium Series 570:216–229

  • Bassett KN, Kleinspehn KL (1997) Early to middle Cretaceous paleogeography of north-central British Columbia: stratigraphy and basin analysis of the Skeena Gp. Can J Earth Sci 34:164–1669

    Article  Google Scholar 

  • Black PR, Braile LW (1982) P n velocity and cooling of the continental lithosphere. J Geophys Res 87:10557–10568

    Article  Google Scholar 

  • Bodri L, Bodri B (1985) On the correlation between heat flow and crustal thickness. Tectonophys 120:69–81

    Article  Google Scholar 

  • Burnham AK, Sweeney JJ (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochim Cosmochim Acta 53:2649–2657

    Article  Google Scholar 

  • Bustin M (1984) Coalification levels and their significance in the groundhog Coalfield, north-central British Columbia. Int J Coal Geol 4:21–44

    Article  Google Scholar 

  • Bustin M, McKenzie KJ (1989) Stratigraphy and depositional environments of the Sustut Gp., southern Sustut basin, north central British Columbia. Bull Can Pet Geol 37:210–223

    Google Scholar 

  • Bustin M, Moffat I (1989) Semianthracite, anthracite and meta-anthracite in the central Canadian Cordillera: their geology, characteristics and coalification history. Int J Coal Geol 13:303–326

    Article  Google Scholar 

  • Chapman DS, Furlong KP (1992) Thermal state of the continental lower crust, In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, Amsterdam, pp 179–199

    Google Scholar 

  • Chapman DS, Pollack HN (1975) Global heat flow: a new look. Earth Planet Sci Lett 28:23–32. doi:10.1016/0012–821X(75)90069–2

    Article  Google Scholar 

  • Chapman DS, Keho TH, Bauer M, Picard MD (1984) Heat flow in the Uinta basin determined from bottom hole temperature (BHT) data. Geophys 49:453–466

    Article  Google Scholar 

  • Clowes R, Hammer P (2002) Comparison of litospheric structures across the Alaskan and Canadian Cordillera. Lithoprobe Rep 82:106–110

    Google Scholar 

  • Crough ST, Thompson GA (1976) Thermal model of continental litosphere. J Geophys Res 81:4857–4862

    Article  Google Scholar 

  • Currie CA (2004) The thermal structure of subduction zones and back-arcs. PhD thesis, University of Victoria, British Columbia, Canada, 267 p

  • Edwards BR, Russell JK (1999) Northern Cordilleran volcanic province: a northern basin and Range?. Geology 27:243–246

    Article  Google Scholar 

  • Eisbacher GH (1974) Sedimentary history and tectonic evolution of the Sustut and Sifton basins, north-central British Columbia. Geological Survey of Canada Paper 73-31, 57 p

  • Engebretson DC, Cox A, Gordon RG (1985) Relative motion between oceanic and continental plates in the Pacific basin. Spec Pap Geol Soc Am 206:1–59

    Google Scholar 

  • Espitalie J, Deroo G, Marquis F. (1985) RockEval pyrolysis and its applications. Institut Français due Petrole, Geologie No. 27299, 72 p. (an English translation of La pyrolyse Rock-Eval et ses applications Premiere, Deuxieme et Troisieme Parties. In: Revue de l’Institut Franciais du Petrole 40: 563–579 and 755–784; 41: 73–89)

  • Evenchick CA (2001) Northeast-trending folds in the western Skeena Fold Belt, northern Canadian Cordillera: a record of Early Cretaceous sinistral plate convergence. J Struct Geol 23:1123–1140

    Article  Google Scholar 

  • Evenchick CA (1991) Geometry, evolution, and tectonic framework of the Skeena Fold Belt, north-central British Columbia. Tectonics 10:527–546

    Article  Google Scholar 

  • Evenchick CA, Thorkelson DJ (2005) Geology of the Spatsizi River map area, north-central British Columbia. Geol Surv Can Bull 577:276

    Google Scholar 

  • Evenchick CA, Crawford ML, McNicoll VJ, Currie LD, O,Sollivan PB (2001) Early Miocene or younger normal faults and other Tertiary structures in west Nass River map area, northwest British Columbia, and adjacent parts of Alaska. Current Research 1999-A, Geol Surv Canada, pp 1–11

  • Evenchick CA, Poulton TP, Tipper HW, Braidek I (2001) Fossils and facies of the northern two-thirds of the Bowser basin, northern British Columbia. Geological Survey of Canada Open File 3956

  • Evenchick CA, Hayes MC, Buddell KA, Osadetz KG (2002) Vitrinite reflectance data and preliminary organic maturity model for the northern two thirds of the Bowser and Sustut basin, north-central British Columbia. Geol Surv Canada, Open File 4343

  • Evenchick CA, Stasiuk LD, Osadetz KG, Ferri F (2004) New and revised vitrinite reflectance data for the Bowser and Sustut basins, British Columbie. Geol Surv Canada Open File 4669

  • Evenchick, CE, Ferri F, Mustard PS, McMechan ME, Ritcey D. McNicoll VJ, Osadetz KG, O’Sullivan PB, Stasiuk LD, Wilson NSF, Poulton TP, Lowe C, Enkin RJ, Waldron J, Snyder DB, Turner RJW, Nowlan G, Boddy M (2005) Highlights of recent research in the Bowser and Sustut basins Project, British Columbia. Current Research, Geol Surv Canada 2005-A1:11 p

  • Evenchick CA, O’Sullivan PB, Osadetz KG, Ferri F (2006) Apatite fission track thermochronology of the northern Bowser and Sustut basins, British Columbia: constraints on Cenozoic thermal history. Bull Can Pet Geol (in press)

  • Ferri F, Osadetz KG, Evenchick CA (2004) Source rock potential of early to middle Jurassic Clastics, Intermontane basins, British Columbia. In: Resource Development and Geoscience Branch, Summary of Activities 2004. British Columbia Energy and Mines, pp.87–97. http://www.em.gov.bc.ca/dl/Oilgas/COG/2004/ferri_osadetz_evenchick.pdf

  • Flueck P, Hyndman RD, Lowe C (2003a) Effective thickness Te of the lithosphere in western Canada. J Geophys Res 108:B9, 2430. doi:101029/2002JB002201

  • Flueck P, Hyndman RD, Mazzotti S, Lewis T (2003b). Litospheric strength and current tectonics of the Northern Canadian Cordillera. Eos Trans AGU, 84 (46) Fall Meet. Suppl. Abstract

  • Gabrielse H, Monger JWH, Wheeler JO, Yorath CJ (1991) Part A. Morphogeological belts, tectonic assemblages and terranes, in Chapter 2 of Geology of the Cordilleran orogen in Canada. In: Gabrielse H, Yorath CJ (ed.) Geol Surv Canada, Geology of Canada 4:15–28

  • Gallagher K (1995) Evolving temperature histories from apatite fission track data. Earth Planet Sci Lett 136:421–435

    Article  Google Scholar 

  • Gallagher K, Brown RW, Johnson C (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci 26:519–572

    Article  Google Scholar 

  • Gordy PL, Frey FR, Norris DK (1977) Geological guide for the C.S.P.G. 1977 Waterton—Glacier Park Field Conference. Canadian Soci Petrol Geol, Calgary

  • Gough DI (1986) Mantle upflow tectonics in the Canadian Cordillera. J Geophys Res 91:1909–1919

    Article  Google Scholar 

  • Gough DI, Majorowicz JA (1992) Magnetotelluric soundings, structure,and fluids in the southern Canadian Cordillera. Can J Earth Sci 29:609–620

    Google Scholar 

  • Haggart JW, Mahoney JB (2003) Petroleum geology framework, south-central Bowser basin, British Columbia. 2003 CSPG Convention Extended Abstracts

  • Hammer P, Clowes RM (2004) The accreted terranes of northwestern British Columbia, Canada: Litospheric velocity structure and tectonics. J Geophys Res 109:B06305. doi:1029/2003JB00274

  • Hayes BJR, Fattahi S, Hayes M (2003) The Nechako basin–frontier potential close to home. 2003 CSPG Convention Abstract

  • Hunt J (1992) Stratigraphy, maturation and source rock potential of Cretaceous strata in the Chilcotin-Nechaco region of British Columbia. MSc Thesis, UBC January 1992, 447 p

  • Hyndman RD, Lewis TJ (1999) Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada. Tectonophys 306:397–442

    Article  Google Scholar 

  • Hyndman RD, Currie CA, Mazotti SP (2005) Subduction zone back-arcs, mobile belts, and orogenic heat. GSA Today 15:4–10

    Google Scholar 

  • Jessop A, Majorowicz JA (1994) Heat transfer in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins, Geol Soc Spec Publ. The Geological Society, London, 78:43–54

  • Jessop AM, Souther JG, Lewis TJ, Judge AS, (1984) Geothermal measurements in northern British Columbia and southern Yukon Territory. Can J Earth Sci 21:599–608

    Article  Google Scholar 

  • Jones A, Gough DI (1995) Electromagnetic images of crustal structures in southern and central Canadian Cordillera. Can J Earth Sci 32:1541–1563

    Article  Google Scholar 

  • Jones AG, Kurtz RD, Boerner DE, Craven JA, Mcneice GW, Gough DI, DeLaurier JM, Ellis RG (1992) Electromagnetic constraints on strike-slip fault geometry—the Frazer river fault system. Geology 20:561–564

    Article  Google Scholar 

  • Koch NG (1973) The Central Cordilleran Region In: McCrossan RG (ed) The future petroleum provinces of Canada—their geology and potential. Can Soc Pet Geol, Memoir 1:37–71

  • Kubik J (1986) The relation between the heat flow field and the distribution of the Pn-wave velocities for the European continent. Stud Geophys Geod 30:60–78

    Article  Google Scholar 

  • Lachenbruch AH (1971) Vertical gradients of heat production in the continental crust , 1. Theoretical detectability from near-surface measurements. J Geophys Res 76:3842–3851

    Article  Google Scholar 

  • Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem Geol (Isot Geosci Sect) 65:1–13

    Article  Google Scholar 

  • Lewis TJ (1991) Heat flux in the Canadian Cordillera. Geol North Am, Deacade Map 1:445–456

    Google Scholar 

  • Lewis T, Hyndman RD, Flueck P, (2003) Heat flow, heat generation and crustal temperatures in the Northern Canadian Cordillera: thermal controls of tectonics. J Geoph Res 108(B6):2316. doi: 10.1029/2002JB002090

    Article  Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as factors in coalification (in Russian). Akad Nauk SSSR Izv Ser Geol 3:95–106

    Google Scholar 

  • Lowe C, Evenchick CA, Bellamy C.S, Smith G (2004) Density and magnetic suscebility of rocks from Bowser and Sustut basins, and underlying Stikinia, north-central British Columbia. Geological Survey of Canada Open File 4629, 23p

  • McCrossan RG, Porter IW (1973) The future petroleum provinces of Canada—the geology and potential. Canadian Society of Petroleum Geologists. Calgary, Canada

  • MacKay PA, Varsek JL, Kubli TE, Dechesne RG, Newson AC, Reid JP (1996) Triangle zones and tectonic wedges. Bull Can Pet Geol 44:I-1–I-5

    Google Scholar 

  • Mareschal JC, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett 223:65–77

    Article  Google Scholar 

  • Majorowicz JA, Gough DI (1991) Crustal structure from MT soundings in the Canadian Cordillera. Earth Planet Sci Lett 102:444–454

    Article  Google Scholar 

  • Majorowicz JA, Gough DI (1994) A model of crustal conductive structure in the Canadian Cordillera. Geophys J Int 117:301–312

    Article  Google Scholar 

  • Majorowicz JA, Gough DI, Lewis TJ (1993) Correlation between the depth to the lower-crustal high conductivity layer and heat flow in the Canadian Cordillera. Tectonophysics 225:49–56

    Article  Google Scholar 

  • Monger JWH Nokleberg WJ (1996) Evolution of the northern North American Cordillera: generation, fragmentation,displacement and accretion of successive North American plate margin arcs. In: Coyner AR, Fahey PL (eds) Geology and ore deposits of the American Cordillera. Geological Society of Nevada Symposium Proceedings, Reno/Sparks, Nevada, April 1995, pp 1133–1152

  • Monger JWH Gabrielse H Souther JA (1972) Evolution of the Canadian Cordillera: a plate tectonic model. Am J Sci 272:577–602

    Article  Google Scholar 

  • Osadetz KG, Evenchick CA, Ferri F, O’Sullivan PB, Donelick RA, Stasiuk, LD, Wilson NSF, Majorowicz JA, Mayr B, Jiang C, Hayes M (2005) Bowser basin petroleum system and thermal history. Presentations from Calgary Bowser/Sustut basins workshop, February 22, 2005

  • Osadetz KG, Jiang C, Evenchick CA, Ferri F, Stasiuk LD, Wilson NSF, Hayes M (2006) Compositions and significance of petroleum systems in Bowser and Sustut basins (Intermontane) British Columbia: crude oil compositional traits. Bull Can Pet Geology (in press)

  • Osadetz KG, Snowdon LR, Obermajer M (2003) Rock-Eval/TOC data for eleven Northern British Columbia Boreholes. Geological Survey of Canada, Open File Report 1550 and B.C. Ministry of Energy and Mines, Petroleum Geology Open File 2003-1, cd-rom

  • O’Sullivan PB, Donelick RA, Osadetz KG, Evenchick CA, Ferri F, Willson NF, Hayes M (2005) Apatite fission-track data from seventy one Bowser and Sustut basin rock samples. GSC Open File XXX and British Columbia Energy and Mines, Oil and Gas Emerging Opportunities and Geosciences Branch Open File CD

  • O’Sullivan PB, Evenchick CA, Donelick RA, Osadetz KG, Ferri F (2006) Apatite fission track thermochronology from the northwestern margin of the Bowser basin: constraints on Cenozoic thermal and tectonic history, and hydrocarbon prospectivety. Bull Can Pet Geol (in press)

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Article  Google Scholar 

  • Ranalli G (2000) Rheology of the crust and its role in tectonic reactivation. J Geodyn 30:3–15

    Article  Google Scholar 

  • Rybach L, Buntebarth G (1982) Relationship between the petrophysical properties density, seismic velocity, heat generation and mineralogical constitution. Earth Planet Sci Lett 57:367–376

    Article  Google Scholar 

  • Rybach L., Buntebarth G (1984) The variation of heat generation density and seismic velocity with rock type in the continental crust. Tectonophys 103:309–344

    Article  Google Scholar 

  • Schiarizza P, MacIntyre D (1999) Geology of the Babine Lake—Takla Lake area, central British Columbia (93K/11, 12, 13, 14; 93N/3, 4, 5, 6). In: Geological fieldwork 1998, British Columbia Ministry of Energy and Mines, Paper 1999–1, pp 33–68

  • Smith GT, Mustard PS (2005) The southern contact of the Bowser Lake and Skeena groups: unconformity or transition? In: Summary of activities 2005, BC Ministry of Energy and Mines, pp 152–156

  • Souther JG, Yorath CJ (1991) Neogene assemblages In: Gabrielse H, Yorath CJ (eds) Geology of the Cordilleran orogen: geological survey of Canada, Geol Can 4:373–401

  • Stasiuk LD, Evenchick CA, Osadetz KG, Ferri F, Ritcey D, Mustard PS, MeMechan M (2005) Regional thermal maturation and petroleum stage assessment using vitrinite reflectance, Bowser and Sustut basins, north-central British Columbia. Geological Survey of Canada Open File 4945

  • Struik LC (1987) The ancient western North American Margin: an Alpine rift model for the east-central Canadian Cordillera. Geological Survey of Canada Paper 87-15

  • Struik LC, MacIntyre DG (2001) Introduction to the special issue of Canadian Journal of Earth Sciences: the Nechako NATMAP Project of the central Canadian Cordillera. Can J Earth Sci 38:485–494(10)

    Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Ame Assoc Petrol Geol Bull 74:1559–1570

    Google Scholar 

  • Teichmuller M, Teichmuller R, Webber K (1979) Inkohlung und Illit-Kristallinität - Vergleichende Untersuchungen im Mesozoikum und Paläozoikum von Westfalen. - Fortschr. Geol. Rheinld. u. Westf. 27: 201–276 Krefeld

  • Tipper HW, Richards TA (1976) Jurassic stratigraphy and history of north-central British Columbia. Geol Surv Can Bull 270:73

    Google Scholar 

  • Vitorello I, Pollack HN (1980) On the secular variation of continental heat flow and the thermal evolution of continents. J Geophys Res 85:983–995

    Article  Google Scholar 

  • Wagner GA, Van den Haute P (1992) Fission track dating. Kluwer, Dordrecht, 285 p

    Google Scholar 

  • Wennberg G, Ferguson IJ (2002) Modeling and interpretation of magnetotelluric data: Watson Lake to Steward (line 2a) and Johnson Crossing to Watson Lake. Lithoprobe Rep 82:145–152

    Google Scholar 

  • Whalen JB, Anderson RG, Struik LC, Villeneuve ME (2001) Geochemistry and Nd isotopes of the François Lake plutonic suite, Endako batholith: host and progenitor to the Endako molybdenum camp, central British Columbia. Can J Earth Sci 38:603–618

    Article  Google Scholar 

  • White TS (2005) Early Eocene and middle Cretaceous paleosol and model-based reconstructions of greenhouse paleoprecipitation. In: GSA Paper 36-4 North-Central Section—39th Annual Meeting, 19–20 May 2005

  • Zelt CA, White DJ (1995), Crustal structure and tectonics of the southern Canadian Cordillera. J Geophys Res 100:24255–24273

    Article  Google Scholar 

  • Zeyen H, Dererova J, Bielik M (2002) Determination of the continental lithosphere thermal structure in the Western Carpathians: integrated modeling of surface heat flow, gravity anomalies and topography. Phys Earth Planet Int 134:89–104

    Article  Google Scholar 

Download references

Acknowledgments

The paper benefited from very helpful reviews of Drs Alan Jessop, Jan Safanda and Topical Editor Vladimir Cermak. We also thank Roy Hyndman of GSCP, Sidney B.C. for helpful suggestions given to first author (JM) at earlier stages of this research. The authors thank Lavern Stasiuk and David Ritcey of the GSC in Calgary and Victoria, respectively, for the provision of the organic maturation data. We would like to acknowledge the support of F. Ferri BC Ministry of Energy and Mines for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Majorowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majorowicz, J., Osadetz, K. Cordilleran Intermontane thermotectonic history and implications for neotectonic structure and petroleum systems, British Columbia, Canada. Int J Earth Sci (Geol Rundsch) 97, 269–287 (2008). https://doi.org/10.1007/s00531-007-0215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0215-x

Keywords

Navigation