Skip to main content
Log in

Extensional neotectonics around the bend of the Western/Central Alps: an overview

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Western Alps’ active tectonics is characterized by ongoing widespread extension in the highest parts of the belt and transpressive/compressive tectonics along its borders. We examine these contrasting tectonic regimes using a multidisciplinary approach including seismotectonics, numerical modeling, GPS, morphotectonics, fieldwork, and brittle deformation analysis. Extension appears to be the dominant process in the present-day tectonic activity in the Western Alps, affecting its internal areas all along the arc. Shortening, in contrast, is limited to small areas located along at the outer borders of the chain. Strike-slip is observed throughout the Alpine realm and in the foreland. The stress-orientation pattern is radial for σ3 in the inner, extensional zones, and for σ1 in the outer, transcurrent/tranpressional ones. Extensional areas can be correlated with the parts of the belt with the thickest crust. Quantification of seismic strain in tectonically homogeneous areas shows that only 10–20% of the geodesy-documented deformation can be explained by the Alpine seismicity. We propose that, Alpine active tectonics are ruled by isostasy/buoyancy forces rather than the ongoing shortening along the Alpine Europe/Adria collision zone. This interpretation is corroborated by numerical modeling. The Neogene extensional structures in the Alps formed under increasingly brittle conditions. A synthesis of paleostress tensors for the internal parts of the West-Alpine Arc documents major orogen-parallel extension with a continuous change in σ3 directions from ENE–WSW in the Simplon area, to N–S in the Vanoise area and to NNW–SSE in the Briançon area. Minor orogen-perpendicular extension increases from N to S. This second signal correlates with the present-day geodynamics as revealed by focal-plane mechanisms analysis. The orogen-parallel extension could be related to the opening of the Ligurian Sea during the Early-Middle Miocene and to compression/rotation of the Adriatic indenter inducing lateral extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahorner Z, Murawski H, Schneider G (1972) Seismotektonische Traverse von der Nordsee bis zum Apennin. Geol Rundsch 61:915–942

    Google Scholar 

  • Amitrano D, Grasso JR, Hantz D (1999) From diffuse to localized damage through elastic interaction. Geophys Res Lett 26:2109–2112

    Google Scholar 

  • Anderson H, Jackson J (1987) Active tectonics in the Adriatic region. Geophys J R Astron Soc 91:937–983

    Google Scholar 

  • Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress–a new rapid direct inversion method by analytical means. Geophys J Int 103:363–376

    Google Scholar 

  • Augliera P, Cattaneo M, Eva C (1995) Seimic multiplets analysis and its implication in seismotectonics. Tectonophysics 248:219–234

    Google Scholar 

  • Baroux E, Béthoux N, Bellier O (2001) Analyses of the stress field in southeastern France from earthquake focal mechanisms. Geophys J Int 145:336–348

    Google Scholar 

  • Bayer R, Carozzo MT, Lanza R, Miletto M, Rey D (1989) Gravity modelling along the ECORS-CROP vertical seimic reflection profile through the Western Alps. Tectonophysics 162:203–218

    Google Scholar 

  • Béthoux N, Fréchet J, Guyoton F, Thouvenot F, Cattaneo M, Eva C, Nicolas M, Granet M (1992) A closing Ligurian Sea? Pure Appl Geophys 139:179–194

    Google Scholar 

  • Bigot-Cormier F, Poupeau G, Sosson M (2000) Dénudations différentielles du Massif Cristallin Externe alpin de l’Argentera (Sud-Est de la France) révélées par thermochronologie traces de fission (apatites, zircons). C R Acad SciParis 330:363–370

    Google Scholar 

  • Bird P (1999) Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting. Comput Geosci 25:383–394

    Google Scholar 

  • Bistacchi A, Dal Piaz GV, Massironi M, Zattin M, Balestrieri ML (2001) The Aosta-Ranzola extensional fault system and Oligocene-Present evolution of the Austroalpine-Penninic wedge in the northwestern Alps. Int J Earth Sci 90:654–667

    Google Scholar 

  • Bogdanoff S, Michard A, Mansour M, Poupeau G (2000) Apatite fission track analysis in the Argentera massif: evidence of contrasting denudation rates in the External Crystalline Massifs of the Western Alps. Terra Nova 12:117–125

    Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic geomorphology. Blackwell, Oxford, pp 1–274

    Google Scholar 

  • Burg JP, Sokoutis D, Bonini M (2002) Model-inspired interpretation of seismic structures in the Central Alps:crustal wedging and buckling at mature stage of collision. Geology 30:643–646

    Google Scholar 

  • Burkhard M (1988) L’helvétique de la bordure occidentale du massif de l’Aar (évolution tectonique et métamorphique). Eclogae Geol Helvet 81:63–114

    Google Scholar 

  • Burov E, Podladchikov Y, Grandjean G, Burg JP (1999) Thermo-mechanical approach to validation of deep crustal and lithospheric structures inferred from multidisciplinary data: application to the Western and Northern Alps. Terra Nova 11:124–131

    Google Scholar 

  • Byerlee JD (1978) Frictional characteristics of granite under high pressure. J Geophys Res 72:3639–3648

    Google Scholar 

  • Calais E, Nocquet JM, Jouanne F, Tardy M (2002) Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996–2001. Geology 30:651–654

    Google Scholar 

  • Cannic S, Mugnier JL, Lardeaux JM (1999) Neogene extension in the Western Alps. Mem Sci Geol (Padova) 51:33–45

    Google Scholar 

  • Carminati E, Wortel MJR, Meijer PT, Sabadini R (1998) The two-stage opening of the western-central Mediterranean basins: a forward modeling to test a new evolutionary model. Earth Planet Sci Lett 160:667–679

    Google Scholar 

  • Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 105:13389–13407

    Google Scholar 

  • Cederbom CE, Sinclair HD, Schlunegger F, Rahn MK (2004) Climate-induced rebound and exhumation of European Alps. Geology 32:709–712

    Google Scholar 

  • Champagnac JD, Sue C, Delacou B, Burkhard M (2003) Brittle orogen-parallel extension in the internal zones of the Swiss Alps (south Valais). Eclogae Geol Helvet 96:325–338

    Google Scholar 

  • Champagnac JD, Sue C, Delacou B, Burkhard M (2004) Brittle deformation in the inner northwestern Alps: from early orogen-parallel extrusion to late orogen-perpendicular collapse. Terra Nova 16:232–242

    Google Scholar 

  • Champagnac JD, Sue C, Delacou B, Tricart P, Allanic C, Burkhard M (2006) Miocene orogen-parallel extension in the inner Western Alps revealed by dynamical fault analyses. Tectonics. doi: 10.1029/2004TC001779

  • Champagnac JD, Anderson R, Delacou B, Molnar P, Sue C (2007) Pliocene isostatic rebound of the Western Alps inferred from topographic analysis and sediment budget. Geology. 35(3):195–198. doi:10.1130/G23053

    Google Scholar 

  • Chéry J, Daignières M, Vilotte JP (1990) How to build an asymmetric crustal root such as the Pyrenean one: a thermomechanical model. Bull Soc Géol France 8(2):211–218

    Google Scholar 

  • Claudel M, Dumont T, Tricart P (1997) Une preuve d’extension contemporaine de l’expansion océanique de la Téthys ligure en Briançonnais: les failles du Vallon Laugier. C R Acad Sci Paris 325:273–279

    Google Scholar 

  • Cloetingh S, Burov EB (1996) Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophys J Int 124:695–723

    Google Scholar 

  • Collombet M, Thomas JC, Chauvin A, Tricart P, Bouillin JP, Gratier JP (2002) Counterclockwise rotation of the Western Alps since the Oligocene: new insights from paleomagnetic data. Tectonics 21:352–366

    Google Scholar 

  • Coward M, Dietrich D (1989) Alpine tectonics: an overview. In: Coward M, Dietrich D, Park R (eds) Alpine tectonics. Geol Soc London Spec Publ 45:1–29

  • Dal Piaz GV (1999). Austroalpine-Piedmont nappe stack and the puzzle of Alpine Tethys. In: Gosso G, Jadoul F, Sella F, Spalla MI (eds) Third workshop on alpine geological studies, Padova. Mem Sci Geol 51:155–176

  • Deichmann N, Garcia-Fernandez M (1992) Rupture geometry from high-precision relative hypocenter locations of microearthquakes clusters. Geophys J Int 110:501–517

    Google Scholar 

  • Delacou B, Sue C, Champagnac JD, Burkhard M (2004) Present-day geodynamics in the bend of the Western and Central Alps as constrained by earthquake analysis. Geophys J Int 158:753–774

    Google Scholar 

  • Delacou B, Sue C, Champagnac JD, Burkhard M (2005a) Origin of the current stress field in the Western/Central Alps: role of gravitational reequilibration constrained by numerical modelling. Geol Soc London Spec Publ 243:295–310

    Article  Google Scholar 

  • Delacou B, Deichmann N, Thouvenot F, Sue C, Champagnac JD, Burkhard M (2005b) Active strike-slip faulting in the Chablais area (NW Alps) from earthquake focal mechanisms and relative locations. Eclogae Geol Helvet 98:189–199

    Google Scholar 

  • Dewey JF, Hempton MR, Kidd WSF, Saroglu F, Sengör AMC (1986) Shortening of continental lithosphere: the neotectonics of eastern Anatolia–a young collision zone. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc London Spec Publ 19:3–36

  • England P, Houseman G (1989) Extension during active convergence, with application to the Tibetan Plateau. J Geophys Res 94:17561–17579

    Google Scholar 

  • Eva E, Solarino S (1998) Variations of stress directions in the Western Alpine arc. Geophys J Int 135:438–448

    Google Scholar 

  • Eva E, Pastore S, Deichmann N (1998) Evidence for ongoing extensional deformation in the Western Swiss Alps and thrust-faulting in the Southwestern Alpine foreland. J Geodynamics 26:27–43

    Google Scholar 

  • Fäh D, Giardini D, Bay F, Bernardi F, Braunmiller J, Deichmann N, Furrer M, Gantner L, Gisler M, Isenegger D, Jimenez MJ, Kästly P, Koglin R, Masciadri V, Rutz M, Scheidegger C, Schibler R, Schorlemmer D, Schwarz-Zanetti S, Steimen S, Sellami S, Wiemer S, Wössner J (2003) ECOS and the related macroseismic database. Eclogae Geol Helvet 96:219–236

    Google Scholar 

  • Fleitout L, Froidevaux C (1982) Tectonics and topography for lithosphere containing density heterogeneities. Tectonics 1:21–56

    Google Scholar 

  • Foeken JPT, Dunai TJ, Bertotti G, Andriessen PAM (2003) Late Miocene to present exhumation in the Ligurian Alps (Southwest Alps) with evidence for accelerated denudation during the Messinian salinity crisis. Geology 31:797–800

    Google Scholar 

  • Fréchet J (1978) Sismicité du sud-est de la France et une nouvelle méthode de zonage sismique. Thèse de 3ème cycle, Grenoble pp 1–178

    Google Scholar 

  • Fréchet J (1985) Sismogénèse et doublets sismiques. Thèse d’état Grenoble, France pp 1–324

    Google Scholar 

  • Frey M, Desmons J, Neubauer F (1999) Metamorphic maps of the Alps. Schweiz Mineral Petrogr Mitt 79:1–4

    Google Scholar 

  • Giardini D, Grünthal G, Shedlock K, Zhang P (1999) The GSHAP Global Seismic Hazard Map. Ann Geofisica 42:1225–1230

    Google Scholar 

  • Gidon M (1974) L’arc alpin a-t-il une origine tourbillonnaire ? C R Acad Sci Paris 278:21–24

    Google Scholar 

  • Grosjean G, Sue C, Burkhard M (2004) Late Neogene brittle extension in the vicinity of the Simplon fault zone, Central Alps, Switzerland. Eclogae Geol Helvet 97:33–46

    Google Scholar 

  • Gubler E, Kahle HG, Klingele E, Mueller S, Olivier R (1981) Recent crustal movements in Switzerland and their geophysical interpretation. Tectonophysics 71:125–152

    Google Scholar 

  • Gudmundsson GH (1994) An order-of-magnitude estimate of the current uplift-rates in Switzerland by the Würm Alpine deglaciation. Eclogae Geol Helvet 87:545–557

    Google Scholar 

  • Guéguen Y, Palciauskas V (1992) Introduction à la physique des roches. Hermann, Paris pp 1–299

    Google Scholar 

  • Gueguen E, Doglioni C, Fernandez M (1998) On the post-25 Ma geodynamic evolution of the Western Mediterranean. Tectonophysics 298:259–269

    Google Scholar 

  • Hassani R, Chéry J (1996) Anelasticity explains topography associated with Basin and Range normal faulting. Geology 24:1095–1098

    Google Scholar 

  • Hassani R, Jongmans D, Chéry J (1997) Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J Geophys Res 102:17951–17965

    Google Scholar 

  • Hu JC, Angelier J (2004) Stress permutations: three dimensional distinct element analysis account for a common phenomenon in brittle tectonics. J Geophys Res 109. doi:10.1029/2003JB002616

  • Hubbard M, Mancktelow NS (1992) Lateral displacement during Neogene convergence in the Western and Central Alps. Geology 20:943–946

    Google Scholar 

  • Ivy-Ochs S, Schäfer J, Kubik PW, Synal HA, Schlüchter C (2004) Timing of deglaciation on the Northern Alpine foreland (Switzerland). Eclogae Geol Helvet 97:47–55

    Google Scholar 

  • Jackson J, McKenzie D (1988) The relationship between plate motion and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys J R Astr Soc 93:45–73

    Google Scholar 

  • Jolivet L, Goffé B, Bousquet R, Oberhänsli R, Michard A (1998) Detachments in high-pressure mountain belts, Tethyan examples. Earth Planet Sci Lett 160:31–47

    Google Scholar 

  • Kahle HG, Geiger A, Buerki B, Gubler E, Marti U, Wirth B, Rothacher M, Gurtner W, Beutler G, Bauersima I, Pfiffner OA (1997) Recent crustal movements, geoid and density distribution; contribution from integrated satellite and terrestrial measurements. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP20. Birkhäuser Verlag, Basel, pp 251–259

    Google Scholar 

  • Kastens K, Mascle J (1990) The geological evolution of the Tyrrhenian sea: an introduction to scientific results of ODP leg 107. Proc ODP Sci Results 107:3–26

    Google Scholar 

  • Kastrup U, Zoback ML, Deichmann N, Evans K, Giardini D (2004) Stress field variations in the Swiss Alps and the Northern Alpine foreland derived from inversion of fault plane solutions. J Geophys Res 109 doi:10.1029/2003JB002550

    Google Scholar 

  • Kelly MA, Buoncristiani JF, Schlüchter C (2004) LGM ice-surface reconstruction, Western Swiss Alps. Eclogae Geol Helvet 97:57–77

    Google Scholar 

  • Kirby SH, Kronenberg AK (1987) Rheology of the lithosphere. Rev Geophys 25:1219–1244

    Google Scholar 

  • Klemann V, Wolf D (1998) Modelling of stresses in the Fennoscandian lithosphere induced by Pleistocene glaciations. Tectonophysics 294:291–303

    Google Scholar 

  • Kong X, Bird P (1995) SHELLS: a thin-shell program for modeling neotectonics of regional or global lithosphere with faults. J Geophys Res 100:22129–22131

    Google Scholar 

  • Kuhlemann J, Kempf O (2002) Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sediment Geol 152:45–78

    Google Scholar 

  • Kuhlemann J, Frisch W, Szekely B, Dunkl I, Kazmer M (2000) Post-collisional sediment budget history of the Alps: tectonic versus climatic control. Int J Earth Sci 91:818–837

    Google Scholar 

  • Kuhlemann J, Frisch W, Szekely B, Dunk I, Kazmer M (2002) Post-collisional sediment budget history of the Alps: tectonic versus climatic control. Int J Earth Sci 91:818–837. doi:10.1007/s00531-002-0266-y

    Google Scholar 

  • Lacassin R, Tapponnier P, Meyer B, Armijo R (2001) Was the Trévaresse thrust the source of the 1909 Lambesc (Provence, France) earthquake? Historical and geomorphic evidence. Earth Planet Sci Lett 333:571–581

    Google Scholar 

  • Lacombe O, Mouthereau F (2002). Basement-involved shortening and deep detachment tectonics in forelands of orogens; insights from recent collisions belts; Taiwan, Western Alps, Pyrenees. Tectonics 21 doi:10.1029/2001TC901018

  • Laubscher H (1991) The arc of the Western Alps today. Eclogae Geol Helvet 84:631–659

    Google Scholar 

  • Le Pichon X, Chamot-Rooke N, Lallemant SL, Noomen R, Veis G (1994) Geodetic determination of the kinematics of Central Greece with respect to Europe: implication for the Eastern Mediterranean tectonics. J Geophys Res 100:12675–12690

    Google Scholar 

  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud A, Dumont T, Gidon M, Bourbon M, de Graciansky PC, Rudkiewicz JL, Mégard-Galli J, Tricart P (1986) The continental margin of the Mesozoic Tethys in the Western Alps. Mar Petrol Geol 3:179–199

    Google Scholar 

  • Lickorish WH, Ford M, Bürgisser J, Cobbold PR (2002) Arcuate thrust systems in sandbox experiments: a comparison to the external arcs of the Western Alps. Geol Soc Am Bull 114:1089–1107

    Google Scholar 

  • Lippitsch R, Kissling E, Ansorge J (2003) Upper mantle structure beneath the Alpine orogen from high-resolution teleseismic tomography. J Geophys Res 108 doi:10.1029/2002JB002016

  • Malusa MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission track thermochronology. Tectonics 24:1–23

    Google Scholar 

  • Marchant RH, Stampfli GM (1997) Crustal and lithospheric structure of the Western Alps: geodynamic significance. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP20. Birkhäuser Verlag, Basel, pp 326–337

    Google Scholar 

  • Marrett R, Peacock DCP (1999) Strain and stress. J Struct Geol 21:1057–1063

    Google Scholar 

  • Martinod J, Jouanne F, Taverna J, Ménard G, Gamond JF, Darmendrail X, Notter JC, Basile C (1996) Present-day deformation of the Dauphiné (SE France) Alpine and Subalpine massifs. Geophys J Int 127:189–200

    Google Scholar 

  • Martinod J, Roux L, Gamond JF, Glot JP (2001) Present-day deformation of the Belledonne Massif (External Alps, France): comparison triangulation-GPS. Bull Soc Géol France 172:713–721

    Google Scholar 

  • Masson F, Verdun J, Bayer R, Debeglia N (1999) A new gravity map of the western Alps and its structural and tectonic consequences: une nouvelle carte gravimetrique des Alpes occidentales et ses consequences structurales et tectoniques. C R Acad Sci Paris 329:865–871

    Google Scholar 

  • Maurer H, Deichmann N (1995) Microearthquake cluster detection based on waveform similarities, with an application to the Western Swiss Alps. Geophys J Int 123:588–600

    Google Scholar 

  • Maurer H, Burkhard M, Deichmann N, Green AG (1997) Active tectonism in the Central Alps: contrasting stress regimes north and south of the Rhone Valley. Terra Nova 9:91–94

    Google Scholar 

  • Ménard G (1979) Relations entre structures profondes et structures superficielles dans le Sud-Est de la France; essai d’utilisation de données géophysiques. PhD thesis, Grenoble pp 1–178

  • Ménard G (1988) Structure et cinématique d’une chaîne de collision: Les Alpes occidentales et centrales. Thèse de Doctorat d’état. Grenoble pp 1–278

    Google Scholar 

  • Ménard G, Molnar P (1988) Collapse of the Hercynian Tibetan Plateau into a late Paleozoic European Basin and Range Province. Nature 334:235–237

    Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346:29–34

    Google Scholar 

  • Molnar P, Lyon-Caen H (1988) Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol Soc Am Bull 218:179–207

    Google Scholar 

  • Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effect of a continental collision. Science 189:419–425

    Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, the uplift of the Tibetan plateau and the Indian monssoon. Rev Geophys 31:123–153

    Google Scholar 

  • Nicolas A, Hirn A, Nicolich R, Polino R, Group ECW (1990) Lithospheric wedging in the Western Alps inferred from the ECORS-CROP traverse. Geology 18:587–590

    Google Scholar 

  • Nocquet JM, Calais E (2003) Crustal velocity field of Western Europe from permanent GPS array solutions, 1996–2001. Geophys J Int 154:72–88

    Google Scholar 

  • Nocquet JM, Calais E (2004) Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure Appl Geophys 161:661–681

    Google Scholar 

  • Paul A, Cattaneo M, Thouvenot F, Spallarossa D, Béthoux N, Fréchet J (2001) A three-dimensional crustal structure velocity model of the South-western Alps from local earthquake tomography. J Geophys Res 106:19367–19389

    Google Scholar 

  • Pavoni N (1980a) Comparison of focal mechanisms of earthquakes and faulting in the Helvetic zone of the Central Valais, Swiss Alps. Eclogae Geol Helvet 73:551–558

    Google Scholar 

  • Pavoni N (1980b) Crustal stresses inferred from fault-plane solutions of earthquakes and neotectonic deformation in Switzerland. Rock Mech Suppl 9:63–68

    Google Scholar 

  • Persaud M, Pfiffner OA (2004) Active deformation in the Eastern Swiss Alps: post-glacial faults, seismicity and surface uplift. Tectonophysics 385:59–84

    Google Scholar 

  • Polino R, Dal Piaz G, Gosso G (1990). Tectonic erosion at the Adria margin and accretionary processes for the Cretaceous orogeny of the Alps. In: Roure F, Heitzmann P, Polino R (eds). Deep structure of the Alps. Mém Soc Géol France 157:345–367

  • Ratschbacher L, Frisch W, Neubauer F, Schmid SM, Neugebauer J (1989) Extension in compressional orogenic belts : the Eastern Alps. Geology 17:404–407

    Google Scholar 

  • Rolland Y, Lardeaux JM, Guillot S, Nicollet C (2000) Extension syn-convergence, poinçonnement vertical et unites métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes). Geodinamica Acta 13:133–148

    Google Scholar 

  • Rollet N, Deverchere J, Beslier MO, Guennoc P, Rehault JP, Sosson M, Truffert C (2002) Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean. Tectonics 21:218–243

    Google Scholar 

  • Rosenbaum G, Lister GS (2004a) Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23 doi:10.1029/2003TC001518

  • Rosenbaum G, Lister GS (2004b) Formation of arcuate orogenic belts in the Western Mediteranean region. Geol Soc Am Bull 383:41–56

    Google Scholar 

  • Rothé JP (1941) Les séismes des Alpes françaises en 1938 et la sismicité des Alpes occidentales. Ann Inst Phys Globe Strasb 3:1–105

    Google Scholar 

  • Roure F, Bergerat F, Damotte B, Mugnier JL, Polino R (1996) The ECORS-CROP Alpine seismic traverse. In Roure F, Heitzmann P, Polino R (eds). Deep structure of the Alps. Mém Soc Géol France 157:367–379

  • Schaer JP, Jeanrichard F (1974) Mouvements verticaux anciens et actuels dans les Alpes suisses. Eclogae Geol Helvet 67:101–119

    Google Scholar 

  • Schmid SM, Kissling E (2000) The arc of the Western Alps in the light of geophysical data on deep crustal structure. Tectonics 19:62–85

    Google Scholar 

  • Schmid S, Zingg A, Handy M (1987) The kinematics of movement along the Insubric Line and emplacement of the Ivrea Zone. Tectonophysics 135:47–66

    Google Scholar 

  • Schmid S, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helvet 97:93–117

    Google Scholar 

  • Scholtz CH (1990) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, pp 1–369

    Google Scholar 

  • Scholtz CH (1998) Earthquakes and friction laws. Nature 391:37–42

    Google Scholar 

  • Selverstone J (2005) Are the Alps collapsing? Annu Rev Earth Planet Sci 33:113–132

    Google Scholar 

  • Seward D, Mancktelow NS (1994) Neogene kinematics of the Central and Western Alps: evidence from fission-track dating. Geology 22:803–806

    Google Scholar 

  • Seyferth M, Henk A (2004) Syn-convergent exhumation and lateral extrusion in continental collision zones–insights from three-dimensional numerical models. Tectonophysics 382:1–29

    Google Scholar 

  • Sibson RH (2003) Thickness of the seismic slip zone. Bull Seism Soc Am 93:1169–1178

    Google Scholar 

  • Sommaruga A (1999) Decollement tectonics in the Jura foreland fold-and-thrust belt. Mar Petrol Geol 16:111–134

    Google Scholar 

  • Spakman W, Wortel R (2004) A tomographic view on the Western Mediterranean geodynamics, In: Cavazza RF, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED Atlas—the Mediterranean region from crust to mantle. Springer, Berlin Heidelberg New York, pp 31–52

    Google Scholar 

  • Stampfli G (1993) Le Briançonnais, terrain exotique dans les Alpes? Eclogae Geol Helvet 1:1–45

    Google Scholar 

  • Stampfli G, Mosar J, Marquer D, Marchant R, Baudin T, Borel G (1998) Subduction and obduction processes in the Swiss Alps. Tectonophysics 296:159–204

    Google Scholar 

  • Steck A, Hunziker J (1994) The Tertiary structure and thermal evolution of the Central Alps–compressional and extensional structures in an orogenic belt. Tectonophysics 238:229–254

    Google Scholar 

  • Sue C, Tricart P (1999) Late Alpine brittle extension above the Frontal Pennine Thrust near Briançon, Western Alps. Eclogae Geol Helvet 92:171–181

    Google Scholar 

  • Sue C, Tricart P (2002) Widespread post-nappe normal faulting in the internal Western Alps: a new constrain on arc dynamic. J Geol Soc London 159:61–70

    Google Scholar 

  • Sue C, Tricart P (2003) Neogene to ongoing normal faulting in the inner Western Alps: a major evolution of the late alpine tectonics. Tectonics 22:1–25

    Google Scholar 

  • Sue C, Thouvenot F, Fréchet J, Tricart P (1999) Widespread extension in the core of the Western Alps revealed by earthquake analysis. J Geophys Res 104:25611–25622

    Google Scholar 

  • Sue C, Martinod J, Tricart P, Thouvenot F, Gamond JF, Frechét J, Marinier D, Glot JP, Grasso JR (2000) Active deformation in the inner Western Alps inferred from comparison between 1972-classical and 1996-GPS geodetic surveys. Tectonophysics 320:17–29

    Google Scholar 

  • Sue C, Grasso JR, Lahaie F, Amitrano D (2002) Mechanical behavior of western alpine structures inferred from statistical analysis of seismicity. Geophys Res Lett 29:65–69

    Google Scholar 

  • Sue C, Delacou B, Burkhard M, Champagnac JD, Allanic C (2007) Seismic strain of the Western Alps. Terra Nova. doi:10.1111/j.1365-3121.2007.00732.x

  • Tapponnier P (1977) Evolution tectonique du système alpin en Méditerranée: Poinçonnement et écrasement rigide-plastique. Bull Soc Géol France 7:437–460

    Google Scholar 

  • Thouvenot F, Fréchet J, Tapponnier P, Thomas JC, Le Brun B, Ménard G, Lacassin R, Jenatton L, Grasso JR, Coutant O, Paul A, Hatzfeld D (1998) The Ml 5.3 Epagny (French Alps) earthquake of 1996 July 15: a long-awaited event on the Vuache Fault. Geophys J Int 135:876–892

    Google Scholar 

  • Thouvenot F, Fréchet J, Jenatton L, Gamond JF (2003) The belledonne border fault: identification of active seismic strike-slip fault in the Western Alps. Geophys J Int 155:174–192

    Google Scholar 

  • Tricart P (1984) From passive margin to continental collision: a tectonic scenario for the Western Alps. Am J Sci 284:97–120

    Article  Google Scholar 

  • Van der Beek PA, Braun J (1999) Controls on post-mid-Cretaceous landscape evolution in the Southeastern Highlands of Australia: insights from numerical surface process models. J Geophys Res 104:4945–4966

    Google Scholar 

  • Vialon P, Rochette P, Ménard G (1989) Indentation and rotation in the Alpine arc. In: Coward M, Dietrich D, Park R (eds) Alpine tectonics. Geol Soc London Spec Publ 45:329–338

  • Von Blanckenburg F, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131

    Google Scholar 

  • Waldhauser F, Kissling E, Ansorge J, Mueller S (1998) Three-dimensional interface modelling with two-dimensional seimic data: the alpine crust-mantle boundary. Geophys J Int 135:264–278

    Google Scholar 

  • Wawrzyniec TF, Selverstone J, Axen GJ (2001) Style of footwall uplift along the simplon and brenner normal fault system, Central and Eastern Alps. Tectonics 20:748–770

    Google Scholar 

  • Wessel P, Smith WH (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72:441 and 445–446

    Google Scholar 

  • Whipple KX, Kirby E, Brocklehurst SH (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature 401:39–43

    Google Scholar 

  • Wortmann UG, Weissert H, Funk H, Hauck J (2001) Alpine plate kinematics revisited: the adria problem. Tectonics 20:134–147

    Google Scholar 

  • Wu P, Johnston P, Lambeck K (1999) Postglacial rebound and fault instability in Fennoscandia. Geophys J Int 139:657–670

    Google Scholar 

  • Zhang J, Lin D, Dalai Z, Yong Z (2000) Orogen-parallel extension in Himalaya: is it the indicator of collapse or the product in process of compressive uplift? Chin Sci Bull 45:114–119

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Neuchâtel University, Grenoble Observatory, and Swiss National Science Found (grants #21-61684.00, #200020-101625/1, #PBNE2-106764). We wish to thank the Sismalp and Swiss Seismological Service networks, J.M. Noquet, P. Bird, and R. Hassani for making their seismic and geodetic data and numerical codes available. We owe much to D. Bernoulli, E. Calais and an anonymous reviewer for their constructive remarks. Many thanks to the people who came with us to the field and to S. Schmid for fruitful discussions. We are grateful to pilot C. Kerkhove for giving us the opportunity to fly over the Alps. Maps were drawn using GMT code (Wessel and Smith 1991). Special thanks to Ange, Daphné, Mélodie and Ombeline. This work is dedicated to Martin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sue.

Additional information

Martin Burkhard deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sue, C., Delacou, B., Champagnac, JD. et al. Extensional neotectonics around the bend of the Western/Central Alps: an overview. Int J Earth Sci (Geol Rundsch) 96, 1101–1129 (2007). https://doi.org/10.1007/s00531-007-0181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0181-3

Keywords

Navigation