Skip to main content
Log in

Geochemistry of amphibolitized eclogites and cross-cutting tonalitic–trondhjemitic dykes in the Metamorphic Kimi Complex in East Rhodope (N.E. Greece): implications for partial melting at the base of a thickened crust

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the ultra-high pressure Metamorphic Kimi Complex widespread tonalitic–trondhjemitic dykes, with an intrusion age ca. 65–63 Ma, cross-cut boudins and layers of amphibolitized eclogites. Geochemical investigation proclaims the tied genetic relationship of the amphibolitized eclogites and the associated tonalitic–trondhjemitic dykes. The major and trace element contents and rare earth element patterns of the amphibolitized eclogites indicate formation of their protoliths by fractional crystallization of tholeiitic magmas in a back-arc environment. The tonalites and trondhjemites are characterized by moderate to high Sr contents (>130 ppm), and low Y (<8.2 ppm) and heavy rare earth element contents (Yb content of 0.19–0.88 ppm). The chemical composition of the tonalitic and trondhjemitic dykes are best explained by partial melting of a tholeiitic source like the amphibolitized eclogites with residual garnet and amphibole, at the base of a thickened crust during Early Tertiary subduction/accretion at the southern margins of the European continent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albarède F (1998) The growth of continental crust. Tectonophysics 296:1–14

    Article  Google Scholar 

  • Allègre CJ, Minster JE (1978) Quantitative models of trace element behaviour in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Arth JG, Barker F, Peterman ZE, Friedman I (1978) Geochemistry of the gabbro–diorite–tonalite–trondhjemite suite of southwest Finland and its implications for the origin of tonalite and trondhjemite magmas. J Petrol 19:289–316

    Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment, and hypotheses of origin. In: Barker F (ed) Trondhjemite, dacites and related rocks. Elsevier, New York, pp 1–12

    Google Scholar 

  • Barnes CG, Petersen SW, Kistler RW, Murray R, Kays MA (1996) Source and tectonic implications of tonalite–trondhjemite magmatism in the Klamath Mountains. Contrib Mineral Petrol 123:40–60

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kbar. J Petrol 32:365–402

    Google Scholar 

  • Beard BL, Fraracci KN, Taylor LA, Snyder GA, Clayton RA, Mayeda TK, Sobolev NV (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petrol 125:293–310

    Article  Google Scholar 

  • Borg LE, Clynne MA (1998) The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of Basaltic Lower Crust. J Petrol 39:1197–1222

    Article  Google Scholar 

  • Burg JP, Ricou LE, Ivanov Z, Godfriaux I, Dimov D, Klain L (1996) Syn-metamorphic nappe complex in the Rhodope Massif: structure and kinematics. Terra Nova 8:6–15

    Article  Google Scholar 

  • Chung S-L, Liu D, Ji J, Chu M-F, Lee H-Y, Wen D-J, Lo C-H, Lee T-Y, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Article  Google Scholar 

  • David K, Schiano P, Allègre CJ (2000) Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet Sci Lett 178:285–301

    Article  Google Scholar 

  • Defant MJ, Kepezhinskas P (2001) Evidence suggests slab melting in arc magmas. EOS Trans 82:65–69

    Article  Google Scholar 

  • Drummond MS, Defant M (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521

    Article  Google Scholar 

  • Foley SF, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Fretzdorff S, Livermore RA, Devey CW, Leat PT, Stoffers P (2002) Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean. J Petrol 43:1435–1467

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesite and plate tectonics. Springer, Berlin, p 392

    Google Scholar 

  • Harms U, Cameron KL, Simon K, Brätz H (1997) Geochemistry and petrogenesis of metabasites from the KTB ultradeep borehole, Germany. Geol Rundsch 86:S155–S166

    Article  Google Scholar 

  • Jackson MD, Gallagher K, Petford N, Cheadle MJ (2005) Towards a coupled physical and chemical model for tonalite–trondhjemite–granodiorite magma formation. Lithos 79:43–60

    Article  Google Scholar 

  • Johannes W (1985) The significance of experimental studies for the formation of migmatites. In: Ashworth JR (ed) Migmatites. Blackie, Glaskow, pp 36–82

    Google Scholar 

  • Johnson K, Barnes CG, Miller CA (1997) Petrology, geochemistry, and genesis of high-Al tonalite and trondhjemites of the Cornucopia Stock, Blue Mountains, Northeastern Oregon. J Petrol 38:1585–1611

    Article  Google Scholar 

  • Kamber BS, Ewart A, Collerson KD, Bruce MC, McDonald GD (2002) Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib Mineral Petrol 144:38–56

    Google Scholar 

  • Kay SM, Ramos VA, Marquez M (1993) Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J Geol 101:703–714

    Article  Google Scholar 

  • Keller RA, Fisk MR, Smellie JL, Strelin JA, Lawver LA, White, WM (2002) Geochemistry of back arc basin volcanism in Bransfield Strait, Antarctica: subducted contributions and along-axis variations. J Geophys Res 107(B8). doi:10.1029/2001JB000444

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Krohe A, Mposkos E (2002) Multiple generations of extensional detachments in the Rhodope Mountains (N. Greece): evidence of episodic exhumation of high-P rocks. In: Blundell DJ, Neubauer G, Von Quant A (eds) The timing and location of major ore deposits in an evolving orogen, vol 204. Geol Soc Lond Spec Publ, pp 151–178

  • Lapierre H, Bosch D, Tardy M, Struik LC (2003) Late Paleozoic and Triassic plume-derived magmas in the Canadian Cordillera played a key role in continental crust growth. Chem Geol 201:55–89

    Article  Google Scholar 

  • Le Roex AP, Dick HJB, Watkins RT (1992) Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11°53′E to 14°38′E. Contrib Mineral Petrol 110:253–268

    Article  Google Scholar 

  • Liati A (2005) Identification of repeated Alpine (ultra) high-pressure metamorphic events by U–Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contrib Mineral Petrol. doi:10.1007/s00410-005-0038-3

  • Liati A, Gebauer D (1999) Constraining the prograde and retrograde P–T–t path of Eocene HP rocks by SHRIMP dating of different zircon domains: inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece. Contrib Mineral Petrol 135:340–354

    Article  Google Scholar 

  • Liati A, Gebauer D, Wysoczanski R (2002) U–Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece); evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chem Geol 184:281–299

    Article  Google Scholar 

  • Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalities and granodiorites from Eastern Finland: Major and trace element geochemistry. J Petrol 28:921–953

    Google Scholar 

  • Martin H (1995) The Archaean grey gneisses and the genesis of continental crust. In: Condie KC (ed) Archaean crustal evolution. Elsevier, Amsterdam, pp 205–259

    Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Mposkos E (2002) Petrology of the ultra-high pressure metamorphic Kimi complex in Rhodope (N.E. Greece): a new insight into the alpine geodynamic evolution of the Rhodope. Bull Geol Soc Grec 34(6):2169–2188

    Google Scholar 

  • Mposkos E, Kostopoulos D (2001) Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett 192:497–506

    Article  Google Scholar 

  • Mposkos E, Krohe A (2000) Petrological and structural evolution of continental high pressure (HP) metamorphic rocks in the Alpine Rhodope domain (N. Greece). In: Proceedings of the 3rd international conference of Geol East Med, pp 221–232

  • Mposkos E, Krohe A (2004) Eclogites and ultramafic rocks form the UHP Kimi complex, Eastern Rhodope Mountains, N.Greece. In: Proceedings of the 5th international symposium on Eastern Med Geol, pp 1183–1186

  • Mposkos E, Krohe A (2006) Pressure–temperature–deformation paths of closely associated ultra-high-pressure (diamond-bearing) crustal and mantle rocks of the Kimi Complex: implications for the tectonic history of the Rhodope Mountains, northern Greece. Can J Earth Sci 43:1755–1776

    Article  Google Scholar 

  • Mposkos E, Wawrzenitz N (1995) Metapegmatites and pegmatites bracketing the time of HP-metamorphism in polymetamorphic rocks of the E-Rhodope: Petrological and geochronological constraints. Geol Soc Grec Spec Publ 2(4):602–608

    Google Scholar 

  • Mposkos E, Baziotis I, Palikari S, Perraki M, Krohe A, Hoinkes G (2004) Alpine UHP metamorphism in the Kimi complex of the Rhodope HP province N.E. Greece: mineralogical and textural indicators. In: 32nd International Geol Conference, Florence, Italy vol 1, issue 18–28, p 108

  • Nutman AP, Bennett VC, Friend CRL, Norman MD (1999) Meta-igneous (non-gneissic) tonalites and quartz–diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contrib Mineral Petrol 137:364–388

    Article  Google Scholar 

  • O’Connor JT (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol Surv Prof Rap 525-B:79–84

    Google Scholar 

  • Pamić J, Palinkaš L (2000) Petrology and geochemistry of Paleogene tonalites from the easternmost parts of the Periadriatic Zone. Mineral Petrol 70:121–141

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Pearce JA, Baker PE, Harvey PK, Luff IW (1995) Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich arc. J Petrol 36:1073–1109

    Google Scholar 

  • Perraki M, Proyer A, Mposkos E, Kaindl R, Baziotis I, Hoinkes G (2004) Micro- and nanodiamonds in garnets of metapelitic rocks from the Greek Rhodope: an in situ micro-Raman study. In: Proceedings of the 5th international symposium on Eastern Med Geol, pp 1216–1219

  • Perraki M, Proyer A, Mposkos E, Kaindl R, Hoinkes G (2006) Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet Sci Lett 241:672–685

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean Trondhjemites and tonalites. Precamb Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 Gpa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Ricou LE, Burg JP, Godfriaux I, Ivanov Z (1998) Rhodope and Vardar: the metamorphic and olistostromic paired belts related to Cretaceous subduction under Europe. Geodyn Acta 11:285–309

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation interpretation. Longman Group UK Ltd., Oxford, pp 1–352

    Google Scholar 

  • Rollinson H (1997) Eclogite xenoliths in west African kimberlites as residues from Archaean granitoids crust formation. Nature 389:173–176

    Article  Google Scholar 

  • Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokolaar BP, Howells MF (eds) Marginal basin geology, vol 16. Geol Soc Lond Spec Publ, pp 59–76

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shervais JW (1982) Ti–V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Singer BS, Myers JD, Frost CD (1992) Mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc: closed-system fractional crystallization of a basalt to rhyodacite eruptive suite. Contrib Mineral Petrol 110:87–112

    Article  Google Scholar 

  • Smith SE, Humphris SE (1998) Geochemistry of basaltic rocks from the TAG hydrothermal mound (26°28′N), Mid-Atlantic Ridge. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158, pp 213–229

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC (2000) The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. J Petrol 41:1653–1671

    Article  Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281

    Article  Google Scholar 

  • Stevenson JA, Daczko NR, Clarke GL, Pearson N, Klepeis KA (2005) Direct observation of adakite melts generated in the lower continental crust, Fiordland, New Zealand. Terra Nova 17:73–79

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geol Soc Lond Spec Publ, pp 313–345

  • Tsuchiya N, Suzuki S, Kimura J-I, Kagami H (2005) Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos 79:179–206

    Article  Google Scholar 

  • Wang Q, Wyman DA, Zhao Z-H, Xu J-F, Bai Z-H, Xiong X-L, Dai T-M, Li C-F, Chu Z-Y (2006) Petrogenesis of carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): implications for Phanerozoic crustal growth in the Central Asia orogenic belt. Chem Geol. doi:10.1016/j.chemgeo.2006.08.013

  • Winther KT (1996) An experimentally based model for the origin of tonalitic and trondhjemitic melts. Chem Geol 127:43–59

    Article  Google Scholar 

  • Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 155:369–383

    Article  Google Scholar 

  • Yoshino T, Madhusoodhan S-K (2001) Origin of scapolite in deep-seated metagabbros of the Kohistan Arc, NW Himalayas. Contrib Mineral Petrol 140:511–531

    Article  Google Scholar 

Download references

Acknowledgments

Critical and constructive reviews by S. Jung and R. Trumbull assisted to improve this manuscript and are greatly acknowledged. We want to express our sincere thank to W.-C. Dullo for his editorial handling. J. C. M. de Hoog and an anonymous reviewer are thanked for their helpful reviews. G. Pe-Piper is thanked for her constructive comments and suggestions on an earlier version of the manuscript. G. H. Kacandes is thanked for improving the English grammar and style of the manuscript. The authors were financially supported by the Project “Pythagoras I”, co-funded by the European Social Fund (75%) and National Resources (25%), and by National Technical University of Athens for the Special Research Project “Protagoras”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Baziotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baziotis, I., Mposkos, E. & Perdikatsis, V. Geochemistry of amphibolitized eclogites and cross-cutting tonalitic–trondhjemitic dykes in the Metamorphic Kimi Complex in East Rhodope (N.E. Greece): implications for partial melting at the base of a thickened crust. Int J Earth Sci (Geol Rundsch) 97, 459–477 (2008). https://doi.org/10.1007/s00531-007-0175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0175-1

Keywords

Navigation