Skip to main content
Log in

Erosion rates on subalpine paleosurfaces in the western Mediterranean by in-situ 10Be concentrations in granites: implications for surface processes and long-term landscape evolution in Corsica (France)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A study of erosion rates by in-situ 10Be concentrations in granites of Miocene high-elevation paleosurfaces in Corsica indicates maximum erosion rates between 8 and 24 mm/kyear. The regional distribution of measured erosion rates indicates that the local climatic conditions, namely precipitation, the petrographic composition of granites, and the degree of brittle deformation govern erosion rates. Chemical erosion dominates even at elevations around 2,000 m in presently subalpine climate conditions. Field evidence indicates that erosion operates by continuous dissolution and/or disintegration to grains (grusification). The erosion rates are relatively high with respect to the preservation of inferred Early Miocene landscapes. We infer temporal burial in the Middle Miocene and significantly lower erosion rates in the Neogene until ∼3 Ma to explain the preservation of paleosurfaces, in line with fission track data. Valley incision rates that are a magnitude higher than erosion rates on summit surfaces result in relief enhancement and long-term isostatic surface uplift. On the other hand, widening and deepening of valleys by cyclic glaciation progressively destroys the summit surface relics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://www.meteofrance.com/FR/montagne/obs.jsp?LIEUID = MONT_MANIC

References

  • Anderson RS (2002) Modeling of tor-dotted crests, bedrock edges and parabolic profiles of the high alpine surfaces of the Wind River Range, Wyoming. Geomorphology 46:35–58

    Article  Google Scholar 

  • Bierman P, Turner J (1995) 10Be and 26Al evidence for exceptionally low rates of Australian bedrock incision and the likely existance of pre-Pleistocene landscapes. Quat Res 44:378–382

    Article  Google Scholar 

  • Brook EJ, Brown ET, Kurz MD, Ackert RP Jr, Raisbeck GM, Yiou F (1995) Constraints on age, erosion, and uplift of neogene glacial deposits in the Transantartic Mountains determined from in situ cosmogenic 10Be and 26Al. Geology 23:1063–1066

    Article  Google Scholar 

  • Brunet C, Monie P, Jolivet L, Cadet JP (2000) Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321:127–155

    Article  Google Scholar 

  • Bruno C, Dupré G, Giorgetti G, Giorgetti JP, Alesandri J (2001) Chì tempu face? Méteorologie, climat et microclimates de la Corse: CNDP-CRDP de Corse/Méteo France. Ajaccio, France, pp 138

  • Cacho I, Grimalt JO, Canals M (2002) Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years, a molecular biomarker approach. J Mar Sys 33–34:253–272

    Article  Google Scholar 

  • Cavazza W, Zattin M, Ventura B, Zuffa GG (2001) Apatite fission-track analysis of Neogene exhumation in northern Corsica (France). Terra Nova 13:51–57

    Article  Google Scholar 

  • Cockburn HAP, Summerfield MA (2004) Geomorphological applications of cosmogenic isotope analysis. Prog Phys Geogr 28:1–42

    Article  Google Scholar 

  • Cockburn HAP, Brown RW, Summerfield MA, Seidl MA (2000) Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach. Earth Planet Sci Lett 179:429–435

    Article  Google Scholar 

  • Conchon O (1975) Les formations quaternaires de type continental en Corse orientale. PhD Thesis, University of Paris VI, vol I: Observations et interprétations, 514 pp, vol II: Documents annexés, 244 pp

  • Conchon O (1985) Nouvelles observations sur les formations glaciaires quaternaires en Corse. Bull Assoc Fr Quat 1:5–11

    Google Scholar 

  • Conchon O (1986) Quaternary glaciations in Corsica. In: Sibrava V, Bowen DQ, Richmond GM (eds) Quaternary glaciations in the Northern Hemisphere. Quat Sci Rev 5:429–432

  • Conchon O (1989) Dynamique et chronologie du détrisme quaternaire en Corse, domaine Méditer-ranéen montagnard et littoral. Bull Assoc Fr Etud Quat 4:201–211

    Google Scholar 

  • Clark DH, Bierman PR, Larsen P (1995) Improving in situ cosmogenic chronometers. Quat Res 44:367–377

    Article  Google Scholar 

  • Danisik M (2005) Cooling history and relief evolution of Corsica (france) as constrained by fission track and (U-Th)/He thermochronology. Tübinger Geowiss Arb A 72:130

    Google Scholar 

  • Dunai TJ (2000) Scaling factors for production rates of in-situ produced cosmogenic nuclides: a critical reevaluation. Earth Planet Sci Lett 176:157–169

    Article  Google Scholar 

  • Dunai TJ (2001a) Reply to comment on “scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation” by Darin Desilets, Marek Zreda and Nathaniel Lifton. Earth Planet Sci Lett 188:289–298

    Article  Google Scholar 

  • Dunai TJ (2001b) Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth Planet Sci Lett 193:197–212

    Article  Google Scholar 

  • Fabel D, Stroeven AP, Harbor J, Kleman J, Elmore D, Fink (2002) Landscape preservation under Fennoscandian ice sheets determined from in situ produced 10Be and 26Al. Earth Planet Sci Lett 201:397–406

    Article  Google Scholar 

  • Ferrandini M, Ferrandini J, Loye-Pilot MD, Butterlin J, Cravatte J, Janin MC (1998) Le Miocène du bassin de Saint-Florent (Corse); modalités de la transgression du Burdigalien supérieur et mise en evidence du Serravallien. Geobios 31:125–137

    Article  Google Scholar 

  • Ferrandini L, Rossi P, Ferrandini M, Farjanel G, Ginsburg L, Schuler M, Geissert F (1999) La Formation conglomératique du Vazzio près d’Ajaccio (Corse-du-Sud), un témoin des dépôts du Chattien supérieur continental synrift en méditerranée occidentale. C R Acad Sci (Paris) Sér II Sci Terre et Planèt 329:271–278

    Google Scholar 

  • Gorini C, Le Marrec A, Mauffret A (1993) Contribution to the structural and sedimentary history of the Gulf of Lions, (Western Mediterranean), from ECORS profiles, industrial seismic profiles and well data. Bull Soc Géol France 164:353–363

    Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Hayes A, Kucera M, Kallel N, Sbaffi L, Rohling EJ (2005) Glacial Mediterranean sea surface temperatures based on planktonic foraminiferal assemblages. Quat Sci Rev 24:999–1016

    Article  Google Scholar 

  • Hormes A, Müller BU, Schlüchter C (2001) The Alps with little ice: evidence für eight Holocene phases of reduced glacier extent in the Central Swiss Alps. Holocene 11:255–265

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multi-kinetic modelling of apatite fission-track data. Min Soc Am Geol Mater Res 2:1–32

    Google Scholar 

  • Klaer W (1956) Verwitterungsformen im Granit auf Korsika: Petermanns Geogr Mitt Erg 261:1–146

  • Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 56:3583–3587

    Article  Google Scholar 

  • Kubik PW, Ivy-Ochs S (2004) A re-evaluation of the 0–10 ka 10Be production rate for exposure dating obtained from the Köfels (Austria) landslide. Nucl Instrum Methods Phys Res B 223–224:618–622

    Article  Google Scholar 

  • Kubik PW, Ivy-Ochs S, Masarik J, Frank M, Schlüchter C (1998) 10Be and 26Al production rates deduced from an instantaneous event within the dendro-calibration curce, the landslide of Köfels, Ötz valley, Austria. Earth Planet Sci Lett 161:231–241

    Article  Google Scholar 

  • Kuhlemann J, Székely B, Dunkl I, Molnár G, Timár G, Frisch W (2005a) DEM analysis of mountainous relief in a crystalline basement block, Cenozoic relief generations in Corsica (France). Z für Geomorph N F 49:1–21

    Google Scholar 

  • Kuhlemann J, Frisch W, Székely B, Dunkl I, Danišik M, Siegers I (2005b) Würmian maximum glaciation in Corsica. Aust J Earth Sci 97:68–81

    Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces, in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439

    Article  Google Scholar 

  • Lenôtre N, Ferrandini J, Delfau M, Panighi J (1996) Mouvements verticaux actuels de la Corse (France) par comparaison de nivellements.- Comptes Rendus de l’Academie des Sciences, Serie II. Sci Terre Planet 323:957–964

    Google Scholar 

  • Marquette GC, Gray JT, Gosse JC, Courchesne F, Stockli L, Macpherson G, Finkel R (2004) Felsenmeer persistence under non-erosive ice in the Torngat and Kaumajet mountains, Quebec and Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating. Can J Earth Sci 41:19–38

    Article  Google Scholar 

  • Masarik J, Reedy RC (1996) Monte Carlo simulation of in situ-produced cosmogenic nuclides. Radiocarbon 38:163–164

    Google Scholar 

  • Meerkötter R, König C, Bissolli P, Gesell G, Mannstein H (2004) A 14-year European cloud climatology from NOAA/AVHRR data in comparison to surface observations. Geophys Res Lett 31:L15103. doi:10.1029/2004GL020098

  • Nishiizumi K, Winterer EL, Kohl CP, Klein J, Middleton R, Lal D, Arnold JR (1989) Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J Geophys Res 94:17907–17915

    Article  Google Scholar 

  • O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270:1962–1964

    Article  Google Scholar 

  • Orszag-Sperber F, Pilot MD (1976) Grands traits du Néogène de Corse. Bull Soc Géol Fr 18:1183–1187

    Google Scholar 

  • Ottaviani-Spella M, Girard M, Rochette P, Cheilletz A, Thinon M (2001) Le volcanisme acide burdigalian du Sud de la Corse: pétrologie, datation K-Ar, paléomagnétisme. C R Acad Sci (Paris) Sci Terre Planèt 333:113–120

    Google Scholar 

  • Riebe CS, Kirchner JW, Granger DE, Finkel RC (2000) Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26Al and 10Be in alluvial sediment. Geology 28:803–806

    Article  Google Scholar 

  • Rossi P, Cocherie A (1991) Genesis of a Variscan batholith; field, petrological and mineralogical evidence from the Corsica-Sardinia Batholith. Tectonophys 195:319–346

    Article  Google Scholar 

  • Rossi P, Rouire J, Durand-Delga M (1980) Carte geólogique de la Corse A 1/250 000, Notice explicative de la feuille. Bureau Rech Géol Miniéres, Service Géol National, Orleans

    Google Scholar 

  • Schaller M, Von Blanckenburg F, Veldkamp A, Tebbens LA, Horvius N, Kubik PW (2002) A 30 000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth Planet Sci Lett 204:307–320

    Article  Google Scholar 

  • Seager WR, Mack GH, Lawton TF (1997) Structural kinematics and depositional history of a Laramide uplift-basin pair in southern New Mexico; implications for development of intraforeland basins. GSA Bull 109:1389–1401

    Article  Google Scholar 

  • Seidl G (1978) Geologie und geodynamische Entwicklung der Schistes Lustres-Zone und des Randbereichs des westkorsischen Altkristallins zwischen Asco und der Plaine Orientale (NE-Korsika). Unpubl Diss Univ Munich, Germany, pp 1–112

    Google Scholar 

  • Small EE, Anderson RS (1998) Pleistocene relief production in Laramide mountain ranges, western United States. Geology 26:123–126

    Article  Google Scholar 

  • Small EE, Anderson RS, Repka JL Finkel R (1997) Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al. Earth Planet Sci Lett 150:413–425

    Article  Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105(B10):23753–23759

    Article  Google Scholar 

  • Vigliotti L, Langenheim VE (1995) When did Sardinia stop rotating? New paleomagnetic results. Terra Nova 7:424–435

    Article  Google Scholar 

  • Von Blanckenburg F, Hewawasam T, Kubik P (2004) Cosmogenic nuclide evidence for low weathering and denudation in the wet tropical Highlands of Sri Lanka. J Geophys Res 109:F03008. doi:10.1029/2003JF000049

  • Zarki-Jakni B, Van der Beek P, Poupeau G, Sosson M, Labrin E, Rossi P, Ferrandini J (2004) Cenozoic denudation of Corsica in responce to Ligurian and Tyrrhenian extension, results from apatite fission-track thermochronology. Tectonics 23. doi:10.1029/2003TC001535

  • Zhang P, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410:891–897

    Article  Google Scholar 

Download references

Acknowledgments

This study has been funded by the German Science Foundation (DFG Project Ku 1298/2). We are obliged to Martin Staiger for technical support in core drilling on top of tors and Gerlinde Kost, Dagmar Höckh and Dorothea Mühlbayer-Renner for purification of quartz samples. We thank Greg Balco (Seattle) for technical advice for quartz purification, and Peter Kubik (Zürich) for measuring the exposure age of a Holocene roche moutonnée. The samples were processed by Ingrid Krumrei in the frame of DFG Project Ku 1298/7. Constructive reviews by Peter Molnar, Robert Anderson, and anonymous reviewers helped to improve an earlier version of this paper. The present manuscript benefitted from reviews of Derek Fabel, Kevin Norton and Friedhelm v. Blanckenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Kuhlemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlemann, J., van der Borg, K., Bons, P.D. et al. Erosion rates on subalpine paleosurfaces in the western Mediterranean by in-situ 10Be concentrations in granites: implications for surface processes and long-term landscape evolution in Corsica (France). Int J Earth Sci (Geol Rundsch) 97, 549–564 (2008). https://doi.org/10.1007/s00531-007-0169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0169-z

Keywords

Navigation