Skip to main content
Log in

Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Pelagonian Zone of Greece is the westernmost segment of the Internal Hellenides comprising widespread crystalline basement exposures of granites and orthogneisses. We dated these basement rocks in order to identify the major crust-forming episodes and to understand the evolutionary history of the area. In our study we investigated granites, gneisses, meta-rhyolites and mylonites from the major occurrences of the Pelagonian Zone. We applied single-zircon dating techniques such as Pb–Pb evaporation, conventional U–Pb and SHRIMP. The majority of the basement rocks gave Permo-Carboniferous intrusion ages, thus emphasizing the importance of this crust-forming event for the Internal Hellenides of Greece. Triassic intrusion ages were obtained, however, for a meta-rhyolite from the western Pelagonian Zone and two mylonites from the eastern Pelagonian Zone. These ages are interpreted to reflect magmatism accompanying early rifting that led to the subsequent opening of the Pindos Ocean to the west and the Meliata Ocean to the east of the Pelagonian Zone. The geochronological results demonstrate that the magmatic episodes during which most of the Pelagonian Zone crystalline basement formed are predominantly pre-Alpine in age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anders B, Reischmann T, Poller U (2002) Geochronology and isotope analysis of basement rocks from the Pelagonian Zone, Greece. Geochim Cosmochim Acta 66:A19

    Google Scholar 

  • Anders B, Reischmann T, Poller U, Kostopoulos D (2003) The oldest rocks in Greece: geochronological evidence for remnants of a Precambrian basement within the central Hellenides. Geochim Cosmochim Acta 67:A18

    Google Scholar 

  • Anders B, Reischmann T, Poller U, Kostopoulos D (2005) Age and origin of granititc rocks from the eastern Vardar Zone: new constraints on the evolution of the Internal Hellenides. J Geol Soc Lond 162:857–870

    Article  Google Scholar 

  • Anders B, Reischmann T, Kostopoulos D, Poller U (2006) The oldest rocks of Greece: first evidence for a Precambrian terrane within the Pelagonian Zone. Geol Mag 143:41–58

    Article  Google Scholar 

  • Aubouin J, Brunn JH, Celet P, Dercourt J, Godfriaux I, Mercier J (1963) Esquisse de la Géologie de la Grèce. Livre Mémoire Professeur Fallot, Mémoires Société géologique de France, pp 383–610

  • Barton CM (1976) The tectonic vector and emplacement age of an allochthonous basement slice in the Olympos are, N.E. Greece. Bull Soc Geol Fr 18:253–258

    Google Scholar 

  • Bébien J, Dubois R, Gauthier A (1986) Example of ensialic ophiolites emplaced in a wrench zone: innermost Hellenic ophiolite belt (Greek Macedonia). Geology 14:1016–1019

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G (2001) Triassic radiolarian assemblages from the cherts associated with pillow lavas in Argolis peninsula (Greece). Abstr Ofioliti 26:75

    Google Scholar 

  • Bortolotti V, Carras N, Chiari M, Fazzuoli M, Marcucci M, Photiades A, Principi G (2003) The Argolis peninsula in the palaeogeographic and geodynamic frame of the Hellenides. Ofioliti 28:79–94

    Google Scholar 

  • Brown SAM, Robertson AHF (2003) Sedimentary geology as a key to understanding the tectonic evolution of the Mesozoic–Early Tertiary Paikon Massif, Vardar suture zone, N Greece. Sediment Geol 160:179–212

    Article  Google Scholar 

  • Brown SAM, Robertson AHF (2004) Evidence for a Neotethys rooted within the Vardar suture zone from Voras Massif, northernmost Greece. Tectonophysics 381:143–173

    Article  Google Scholar 

  • Celet P, Ferrière J (1978) Les Hellénides internes: Le Pèlagonien. Eclogae Geol Helv 73(3):467–495

    Google Scholar 

  • Chen F, Siebel W, Satir M, Terzioglu MN, Saka K (2002) Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul Zone. Int J Earth Sci 91:469–481

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Compston W (1999) Geological age by instrumental analysis: the 29th Hallimond Lecture. Mineral Mag 63(3):297–311

    Article  Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89(Suppl):B525–B534

    Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53:468–500

  • De Bono A (1998) Pelagonian margins in central Evia Island (Greece). Stratigraphy and geodynamic evolution. PhD thesis, Lausanne University, pp 1–114. http://www.ss.unil.ch/publications/pdf/phd_debono.pdf

  • De Bono A, Martini R, Zaninetti L, Hirsch F, Stampfli GM, Vavassis I (2001) Permo-Triassic stratigraphy of the Pelagonian zone in central Evia island (Greece). Eclogae Geol Helv 94:289–311

    Google Scholar 

  • Dimitriadis S, Asvesta A (1993) Sedimentation and magmatism related to the Triassic rifting and later events in the Vardar-Axios Zone. Bull Geol Soc Greece 18(2):149–168

    Google Scholar 

  • Dürr S (1975) Über Alter und geotektonische Stellung des Menderes-Kristallins/SW-Anatolien und seine Aequivalente in der mittleren Aegaeis. Habilitations-Schrift, Universität Marburg, pp 1–107

  • Engel M, Reischmann T (1998) Single-zircon geochronology of the orthogneisses from Paros, Greece. Bull Geol Soc Greece 32(3):91–99

    Google Scholar 

  • Engel M, Reischmann T (1999) Geochronology of the pre-alpine basement of the central Cyclades, Greece. J Conf Abstr 4, 806 (abstr), EUG 10

  • Ferentinos GC (1973) The geology–petrology of the Island of Skiathos. Bull Geol Soc Greece 10(2):323–358

    Google Scholar 

  • Fytikas M, Giuliani O, Innocenti F, Manetti P, Mazzuoli R, Peccerillo A, Villari L (1980) Neogene volcanism of the northern and central aegean region. Ann Geol Pays Helleniques 30:106–129

    Google Scholar 

  • Graf J (2001) Alpine tectonics in western Bulgaria: Cretaceous compression of the Kraište region and Cenozoic exhumation of the crystalline Osogovo-Lisec Complex. PhD thesis, ETH Zürich, No. 14238, pp 1–185. http://www.e-collection.ethbib.ethz.ch/show?type=diss&nr=14238

  • Hetzel R, Reischmann T (1996) Intrusion age of Pan-African augen gneisses in the southern Menderes Massif and the age of cooling after Alpine ductile extensional deformation. Geol Mag 133(5):565–572

    Article  Google Scholar 

  • Himmerkus F, Reischmann T, Kostopoulos D (2003) The Serbo-Macedonian Massif, the oldest crustal segment of the Internal Hellenides, identified by zircon ages. Geophys Res Abstr 5, 05671

    Google Scholar 

  • Himmerkus F, Reischmann T, Kostopoulos D (2004) Triassic rifting recorded in Gondwana derived Tethyan terranes, Serbo-Macedonian Massif, northern Greece. Ber Dtsch Mineral Ges Beih Eur J Mineral 16:57

    Google Scholar 

  • IGME (1983) Geological map of Greece, scale 1:500 000. Institute of Geology and Mineral Exploration, Athens

  • Jacobshagen V (1986) Geologie von Griechenland. Gebrueder Borntraeger, Berlin, pp 1–363

    Google Scholar 

  • Katerinopoulos A, Kyriakopoulos K, del Moro A, Kokkinakis A, Giannotti U (1998) Petrology, geochemistry and Rb/Sr age determination of Hercynian granitic rocks from Thessaly, Central Greece. Chem Erde 58:64–79

    Google Scholar 

  • Kauffmann G (1976) Perm und Trias im östlichen Mittelgriechenland und auf einigen ägäischen Inseln. Z Dtsch Geol Ges 127:387–398

    Google Scholar 

  • Kilias A, Mountrakis D (1989) The Pelagonian Nappe. Tectonics, metamorphism and magmatism (in Greek with English abstract). Bull Geol Soc Greece 23(1):29–46

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb-age-investigations on single zircons using a double filament thermal ion source. Contrib Mineral Petrol 93:482–490

    Article  Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined Pb+emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and applications to zirconology. Contrib Mineral Petrol 96:63–71

    Article  Google Scholar 

  • Kockel F, Mollat H (1977) Erläuterungen zur Geologischen Karte der Chalkidiki und angrenzender Gebiete 1:100 000, Nordgriechenland. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 1–119

  • Kondopoulou D (2000) Palaeomagnetism in Greece: Cenozoic and Mesozoic components and their geodynamic implications. Tectonophysics 326:131–151

    Article  Google Scholar 

  • Koroneos A, Christofides G, del Moro A, Kilias A (1993) Rb–Sr geochronology and geochemical aspects of the Eastern Varnountas plutonite (NW Macedonia, Greece). N Jahrb Mineral Abh 165(3):297–315

    Google Scholar 

  • Krogh TE (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Article  Google Scholar 

  • Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–161

    Article  Google Scholar 

  • Lips ALW, White SH, Wijbrans JR (1998) 40Ar/39Ar laserprobe dating of discrete deformational events: a continuous record of early Alpine tectonics in the Pelagonian Zone, NW Aegean area, Greece. Tectonophysics 298:133–153

    Article  Google Scholar 

  • Loos S, Reischmann T (1999) The evolution of the Menderes Massif in SW Turkey as revealed by zircon dating. J Geol Soc Lond 156:1021–1030

    Google Scholar 

  • Ludwig KR (2001) SQUID 1.02. Berkeley Geochronological Center, Special publication no. 2, pp 1–19

  • Ludwig KR (2003) Isoplot/Ex 3.00. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special publication no. 4, pp 1–70

  • Melentis JK (1973) Die Geologie der Insel Skyros (in Greek with German summary). Bull Geol Soc Greece 10:298–322

    Google Scholar 

  • Mercier J, Vergély P, Bébien J (1975) Les ophiolites hellénique “obductées” au Jurassique supérieur sont-elles les vestiges d’un Océan téthysien ou d’une mer marginale péri-européene? C R somm Soc Geol Fr 17:108–111

    Google Scholar 

  • Migiros G, Galeos A (1990) Tectonic and stratigraphic significance of the Ano Garefi ophiolitic rocks (Northern Greece). In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites, oceanic crustal analogues: proceedings of the symposium “Troodos 1987”. Geol Survey Dept, Cyprus, pp 279–284

  • Mountrakis D (1982) Étude géologique des terrains métamorphiques de Macédoine occidentale (Grèce). Bull Soc Geol Fr 24(4):697–704

    Google Scholar 

  • Mountrakis D (1984) Structural evolution of the Pelagonian Zone in Northwestern Macedonia, Greece. In: Dixon JE, Robertson AHF (eds) The geological evolution of the Eastern Mediterranean. Geol Soc Lond Spec Publ 17, pp 581–590

  • Mountrakis D, Eleftheriadis G, Christofides G, Kilias A, Sapountzis E (1987) Silicic metavolcanics in the Western Pelagonian Margin of Greece related to the opening of Neo-Tethys. Chem Erde 47:167–179

    Google Scholar 

  • Okay AI, Satir M, Tüyüz O, Akyüz S, Chen F (2001) The tectonics of the Strandja Massif: late Variscan and mid-Mesozoic deformation and metamorphism in the northern Aegean. Int J Earth Sci 90:217–233

    Article  Google Scholar 

  • Özmen F, Reischmann T (1999) The age of the Sakarya continent in W Anatolia: Implications for the evolution of the Aegean region. J Conf Abstr 4, 805 (abstr), EUG 10

    Google Scholar 

  • Paces JB, Miller Jr JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J Geophys Res 98(B8):13997–14013

    Google Scholar 

  • Parrish R (2001) The response of mineral chronometers to metamorphism and deformation in orogenic belts. In: Miller JA, Holdsworth RE, Buick IS, Hand M (eds) Continental reactivation and reworking. Geol Soc Lond Spec Publ 184, pp 289–301

  • Pe-Piper G (1982) Geochemistry, tectonic setting and metamorphism of mid-Triassic volcanic rocks of Greece. Tectonophysics 85:253–272

    Article  Google Scholar 

  • Pe-Piper G (1991) Petrology and origin of ?Mesozoic dioritic rocks from the island of Skyros, Greece. Ofioliti 16(2):111–119

    Google Scholar 

  • Pe-Piper G (1998) The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geol Mag 135:331–348

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2002) The igneous rocks of Greece. The anatomy of an orogen. Gebrueder Borntraeger, Berlin, pp 1–573

    Google Scholar 

  • Pe-Piper G, Doutsos T, Mporonkay C (1993a) Structure, geochemistry and mineralogy of Hercynian granitoid rocks of the Verdikoussa area, Northern Thessaly, Greece and their regional significance. N Jahrb Mineral Abh 165(3):267–296

    Google Scholar 

  • Pe-Piper G, Doutsos T, Mijara A (1993b) Petrology and regional significance of the Hercynian granitoid rocks of the Olympiada Area, Northern Thessaly, Greece. Chem Erde 53:21–36

    Google Scholar 

  • Peytcheva I, von Quadt A (1995) U–Pb zircon dating of metagranites grom Byala-Reka region in the east Rhodopes, Bulgaria. Geol Soc Greece Spec Publ 4, pp 637–642

  • Peytcheva I, von Quadt A, Ovtcharova M, Handler R, Neubauer F, Salnikova E, Kostitsyn Y, Sarov S, Kolcheva K (2004) Metagranitoids from the eastern part of the Central Rhodopean Dome (Bulgaria): U–Pb, Rb–Sr and 40Ar/39Ar timing of emplacement and exhumation and isotope-geochemical features. Mineral Petrol 82:1–31. DOI 10.1007/s00710-004-0039-3

    Google Scholar 

  • Reischmann T (1998) Pre-alpine origin of tectonic units from the metamorphic complex of Naxos, Greece, identified by single-zircon Pb/Pb dating. Bull Geol Soc Greece 32(3):101–111

    Google Scholar 

  • Reischmann T, Kostopoulos DK, Loos S, Anders B, Avgerinas A, Sklavounos SA (2001) Late Palaeozoic magmatism in the basement rocks southwest of Mt. Olympos, Central Pelagonian Zone, Greece: remnants of a Permo-Carboniferous magmatic arc. Bull Geol Soc Greece 34(3):985–993

    Google Scholar 

  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991) Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeogr Palaeoclim Palaeoecol 87:289–343

    Article  Google Scholar 

  • Schermer ER (1990) Mechanisms of blueschist creation and preservation in an A-type subduction zone, Mount Olympos region, Greece. Geology 18:1130–1133

    Article  Google Scholar 

  • Stacey JS, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Staïs A, Ferriére J (1991) Nouvelles donnees sur la paleogeographie mesozoique du domaine Vardarien: les bassins d’Almopias et de Peonias (Macédoine, Helleniques Internes septentrionales). Bull Geol Soc Greece 25:491–507

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • Stampfli GM, Mosar J, Favre P, Pillevuit A, Vannay J-C (2001) Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean Basin connection. In: Ziegler PA, Cavazza W, Robertson AFH, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mem Mus Natl Hist Nat 186:51–108

  • Turpaud P, Reischmann T (2003) Zircon ages of granitic gneisses from the Rhodope (N. Greece), determination of basement age and evidences for a Cretaceous intrusive event. Geophys Res Abstr 5, 04435 (abstr)

    Google Scholar 

  • Vavassis I, De Bono A, Stampfli GM, Giorgis D, Valloton A, Amelin Y (2000) U–Pb and Ar–Ar geochronological data from the Pelagonian basement in Evia (Greece): geodynamic implications for the evolution of Palaeotethys. Schweiz Mineral Petrogr Mitt 80:21–43

    Google Scholar 

  • Wallbrecher E (1976) Geologie und Tektonik auf dem Südteil der Magnesischen Halbinsel (Nord-Griechenland). Z Dtsch Geol Ges 127:365–371

    Google Scholar 

  • Wendt JI, Todt W (1991) A vapour digestion method for dating single-zircons by direct measurement of U and Pb without chemical separation. Terra Abstr 3:507–508

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  • Yarwood GA, Aftalion M (1976) Field relations and U–Pb geochronology of a granite from the Pelagonian Zone of the Hellenides (High Pieria, Greece). Bull Soc Geol Fr 18(2):259–264

    Google Scholar 

Download references

Acknowledgments

This work was funded by grant GK392 of the Graduiertenkolleg “Stoffbestand und Entwicklung von Kruste und Mantel”. We cordially thank U. Poller for analysing samples with the SHRIMP at the ANU, Canberra, Australia. Help with SHRIMP analyses at the ANU, Canberra, by W. Todt and C.M. Fanning and at the VSEGEI, St. Petersburg, Russia, by S. Sergeev and D. Matukov are gratefully acknowledged. Help with the cathodoluminescence study by J. Huth is also gratefully acknowledged. We wish to thank J. F. von Raumer for his constructive review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Anders.

Appendix: Analytical methods

Appendix: Analytical methods

For geochronology sample weights were between 8 and 12 kg. The rocks were crushed and sieved to a grain size smaller than 500 μm using standard procedures, followed by mineral separation using a Wilfley table, a Frantz magnetic separator and heavy liquids. In a final step, the zircons were handpicked under a binocular to avoid grains with visible inclusions.

Three different methods were used for zircon geochronology, namely the Pb–Pb evaporation method (Kober 1986, 1987), the conventional U–Pb method and SHRIMP (e.g. Compston et al. 1984; Compston 1999).

For zircon grains that were analysed using the Pb–Pb evaporation method, ages were calculated from the 207Pb/206Pb values after correction for common Pb using the values of Stacey and Kramers (1975). Sample ages were calculated as weighted averages, using Isoplot (Ludwig 2003).

The application of the single-zircon conventional U–Pb method is based on the low contamination method of Krogh (1973). Before dissolution, the zircons were washed in 7 N HNO3 and a mixed 205Pb–235U spike was added. The zircon grains were dissolved with HF in Teflon bombs at 200°C. Chemical separation of U and Pb with HBr chemistry followed, using 20 μl columns filled with anion-exchange resin. Some zircon grains of sample V7 were analysed following the vapour digestion method of Wendt and Todt (1991), in which Pb and U are not chemically separated after dissolution but measured from the same Re filament. Pb and U were loaded on single Re filaments with silica gel. Thermal ionisation mass spectrometer (TIMS) measurements were performed on a Finnigan MAT 261 equipped with a secondary electron multiplier at the Max-Planck-Institut für Chemie, Mainz, Germany. After correction for fractionation, blank and common Pb (using the values of Stacey and Kramers 1975), ages were calculated using Isoplot (Ludwig 2003). Procedure blanks were  < 40 pg Pb, the fractionation factor (3‰ per ΔAMU) was determined by repeated measurements of NBS 981 under the same conditions as the samples.

Three samples (Pl54, Pl16 and Ev4) were dated by sensitive high-resolution ion microprobe (SHRIMP) at the ANU, Canberra, Australia. For calibration of the Pb–U ratios the zircon standard FC1 (age 1,099 Ma; Paces and Miller 1993) was used. U concentrations were calibrated using the SL13 zircon standard. Two samples (Pl37 and Pl40) were dated by SHRIMP at the Centre of Isotopic Research, St. Petersburg, Russia. The TEMORA reference zircon (age 416.75 Ma; Black et al. 2003) was used for calibration of the Pb–U ratios and zircon standard 91500 for U concentration calibration (Wiedenbeck et al. 1995). Data reduction and age calculations were based on SQUID (Ludwig 2001). Concordia diagrams were drawn with Isoplot (Ludwig 2003). All ages are given either at 2σ or 95% confidence level.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, B., Reischmann, T. & Kostopoulos, D. Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. Int J Earth Sci (Geol Rundsch) 96, 639–661 (2007). https://doi.org/10.1007/s00531-006-0121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0121-7

Keywords

Navigation