Skip to main content
Log in

Emplacement and deformation of the ca. 1.45 Ga Karlshamn granitoid pluton, southeastern Sweden, during ENE-WSW Danopolonian shortening

  • ORIGINAL PAPER
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Anisotropy of magnetic susceptibility and structural geology of the ca. 1.45 Ga Karlshamn pluton (southern Sweden) are used to study its emplacement and structural evolution. The Karlshamn pluton is one of the largest metaluminous A-type granitoid intrusions in southern Sweden. It is a multiphase body made up of two suites that differ in composition but which have similar crystallization ages. The magmatic foliation, ductile shear zones and granite–pegmatite filled fractures were mapped as well as the metamorphic foliation and extension lineation in the metamorphic host rocks. The anisotropy of magnetic susceptibility was used to map the magnetite petrofabric of the pluton, providing a larger data set for both the magmatic foliations and lineations, which could not be mapped in the field. The fabrics within the pluton are continuous with the metamorphic fabrics in the country rocks. Both the pluton and the country rock fabrics were folded during ENE–WSW compression, while the pluton was still a magma mush. The stress field orientation during cooling of the pluton is determined on the basis of magmatic, ductile and brittle structures in the Karlshamn pluton that formed successively as the pluton cooled. The compressional event is referred to as the Danopolonian orogeny and therefore the Karlshamn granitoids, and other plutons of similar composition and age in central and southern Sweden, on the Danish Island of Bornholm, and in Lithuania, may be considered as syntectonic intrusions and not as anorogenic, as was previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Åberg G (1988) Middle proterozoic anorogenic magmatism in Sweden and worldwide. Lithos 21:279–289

    Article  Google Scholar 

  • Åhäll K-I (2001) Åldersbestämning av svårdaterade begarter i sydöstra Sverige. Unpublished report R-01-60, Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm

  • Andersson J, Moller C, Johansson L (2002) Zircon geochronology of migmatite gneisses along the Mylonite zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic shield. Precambrian Res 114(1–2):121–147

    Article  Google Scholar 

  • Andersson J, Söderlund U, Cornell D, Johansson L, Möller C (1999) Sveconorwegian (-Grenvillian) deformation, metamorphism and leucosome formation in SW Sweden, SW Baltic Shield: constraints from a Mesoproterozoic granite intrusion. Precambrian Res 98(1–2):151–171

    Article  Google Scholar 

  • Andréasson PG, Dallmeyer RD (1995) Tectonothermal evolution of high-alumina rocks within the Protogine zone, southern Sweden. J Metamorphic Geol 13:461–474

    Google Scholar 

  • Benn K, Horne RJ, Kontak DJ, Pignotta GS, Evans NG (1997) Syn-Acadian emplacement model for the South Mountain batholith, Meguma Terrane, Nova Scotia: magnetic fabric and structural analyses. Geol Soc Am Bull 109(10):1279–1293

    Article  Google Scholar 

  • Benn K, Paterson SR, Lund SP, Pignota GS, Kruse S (2001) Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the cretaceous Mt. Stuart batholith. Phys Chem Earth 26(4–5):343–354

    Google Scholar 

  • Bogdanova S (2001) Tectonic settings of 1.65–1.4 Ga AMCG magmatism in the western East European craton (Western Baltica). EUG XI Abstracts, Strasbourg, France, p 769

  • Bolle O, Diot H, Trindade RIF (2003) Magnetic fabrics in the Holum granite (Vest-Agder, southernmost Norway): implications for the late evolution of the Sveconorwegian (Grenvillian) orogen of SW Scandinavia. Precambrian Res 121:221–249

    Article  Google Scholar 

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42(1–2):49–93

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Petrology and structural geology. Kluwer, Dordrecht, pp 95–112

    Google Scholar 

  • Bruun Å, Kornfält K-A, Wikman H (1993) Provisoriska översiktliga berggrundskartan Kalmar. Ba 46. Scale 1:250000. Geological survey of Sweden (SGU)

  • Butler RF (1992) Paleomagnetism. Blackwell, Boston, p 320

    Google Scholar 

  • Canon-Tapia E (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys Earth Planet Inter 94:149–158

    Article  Google Scholar 

  • Čečys A, Bogdanova S, Janson C, Bibikova E, Kornfält K-A (2002) The Stenshuvud and Tåghusa granitoids: new representatives of mesoproterozoic magmatism in southern Sweden. GFF 124:149–162

    Google Scholar 

  • Čečys A, Johansson Å, Bogdanova S, Rimsa A, Kovach V (2006) The Mesoproterozoic Karlshamn pluton, south Sweden: compositional evidence for multiple injections and NORDSIM zircon ages. Int J Earth Sci (in preparation)

  • Čečys A, Rimsa A, Johansson Å, Bogdanova SV (2003) The multiphase Karlshamn pluton: new NORDSIM zircon ages, Joint EGS-AGU-EUG Assembly. Geophysical Reasearch Abstracts, Nice, France, pp. Abs. Nr. EAE03-A-12764

  • Christoffel CA, Connelly JN, Åhäll K-I (1999) Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. Precambrian Res 98(3–4):173–195

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chapell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200

    Article  Google Scholar 

  • Collins WJ, Richards SR, Healy BE, Ellison PI (2000) Origin of heterogenous mafic enclaves by two-stage hybridisation in magma conduits (dykes) below and in granitic magma chambers. Trans R Soc Edinb Earth Sci 91(1–2):27–45

    Google Scholar 

  • Fernandez AN, Gasquet DR (1994) Relative rheological evolution of chemically contrasted coeval magmas: example of the Tichka plutonic complex (Morocco). Contrib Mineral Petrol 116:316–326

    Article  Google Scholar 

  • Gapais D (1989) Shear structures within deformed granites: mechanical and thermal indicators. Geology 17:1144–1147

    Article  Google Scholar 

  • Geisler T, Schleicher H (2000) Composition and U-Th-total Pb model ages of polygenetic zircons from the Vånga granite, south Sweden: an electron microprobe study. GFF 122(2):227–235

    Google Scholar 

  • Grégoire V, Darrozes J, Gaillot P, Nédelec A, Launeau P (1998) Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study. J Struct Geol 20(7):937–944

    Article  Google Scholar 

  • Grégoire V, de Saint Blanquat M, Nédelec A, Bouchez J-L (1995) Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophys Res Lett 22:2765–2768

    Article  Google Scholar 

  • Hanmer S (1987) Textural map units in quartzo-feldspathic mylonitic rocks. Can J Earth Sci 24:2065–2073

    Article  Google Scholar 

  • Högdahl K, Andersson UB, Eklund O (eds) (2004) The Transscandinavian igneous belt in Sweden: a review of its character and evolution. Special paper, 37 Geological Survey of Finland, Espoo, p 125

  • Hrouda F (1980) Magnetocrystalline anisotropy of rocks and massive ores: a mathematical model study and its fabric implications. J Struct Geol 2(4):459–462

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Jelinek V (1978) Statistical processing of magnetic susceptibility measured in group of specimens. Stud Geoph Geod 22:50–62

    Article  Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–7

    Article  Google Scholar 

  • Johansson Å, Bogdanova S, Čečys A (2006) A revised geochronology for the Blekinge province, southern Sweden. GFF (in press)

  • Johansson Å, Bogdanova S, Claesson S, Taran L (2004) Gneisses and granitoids of Bornholm. Abstract 26th Nordic Geological Winter Meeting GFF 126:24

    Google Scholar 

  • Johansson Å, Larsen O (1989) Radiometric age determinations and Precambrian geochronology of Blekinge, southern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 111(1):35–50

    Google Scholar 

  • Johansson L (1992) The late Sveconorwegian metamorphic discontinuity across the Protogine zone. Geologiska Föreningens i Stockholm Förhandlingar 114:350–353

    Google Scholar 

  • Johansson L, Johansson Å (1990) Isotope geochemistry and age relationships of mafic intrusions along the Protogine zone, southern Sweden. Precambrian Res 48(4):395–414

    Article  Google Scholar 

  • Kornfält K-A (1993a) Beskrivning till berggrundskartan Karlskrona NV/SV. SGU Af 179. Swedish Geological Survey (SGU), Uppsala, p 56

  • Kornfält K-A (1993b) U-Pb zircon ages of three granite samples from Blekinge county, south-eastern Sweden. In: Lundqvist T (ed) Radiometric dating results. SGU C823. Swedish Geological Survey (SGU), Uppsala, pp 15–31

  • Kornfält K-A (1996) U-Pb zircon ages of six granite samples from Blekinge county, southeastern Sweden. In: Lundqvist T (ed) Radiometric dating results 2. SGU C 828. Swedish Geological Survey (SGU), Uppsala, pp 15–31

  • Kornfält K-A, Bergström J (1983) Beskrivning till berggrundskartan Karlshamn NV. (in Swedish) SGU Af 135. Swedish Geological Survey (SGU), Uppsala, 173 pp

  • Kornfält K-A, Bergström J (1986) Beskrivning till berggrundskan Karlshamn NO. SGU Af 154. Swedish Geological Survey (SGU), Uppsala, 55 pp

  • Kornfält K-A, Bergström J (1990a) Beskrivning till berggrundskartorna Karlshamn SV och SO. SGU Af 167 and 168. Swedish Geological Survey (SGU), Uppsala, pp 74

  • Kornfält K-A, Bergström J (1990b) Provisoriska översiktliga berggrundskartan Karlskrona. Ba 44. Scale 1:250000. Geological survey of Sweden (SGU)

  • Kornfält K-A, Bruun Å (2002) Beskrivning till berggrundskartan 3G Kristianopel NV. Sveriges Geologiska Undersökning Af 211, pp 52

  • Kornfält K-A, Vaasjoki M (1999) U-Pb zircon datings of Småland and Karlshamn granites from southeasternmost Sweden. In: Bergman S (ed) Radiometric dating results 4. SGU C831. Swedish Geological Survey (SGU), Uppsala, pp 33–41

  • Krauss M, Franz K-M, Hammer J, Lindh A (1996) Zur Geologie der Småland-Blekinge-Störungszone (SE-Schweden). Zeitschrift für geologische Wissenschaften 24(3/4):273–282

    Google Scholar 

  • Larsen O (1971) K/Ar age determinations from Precabrian of Denmark. Geol Surv Denmark. II Series 97

  • Larson SA, Berglund J (1992) A chronological subdivision of the Transscandinavian igneous belt: three magmatic episodes? Geologiska Föreningens i Stockholm Förhandlingar 114(1):113–130

    Google Scholar 

  • Lindh A, Krauss M, Franz K-M (2001) Interpreting the Småland-Blekinge Deformation zone from chemical and structural data. GFF 123(3):181–191

    Google Scholar 

  • Mansfeld J (1996) Geological, geochemical and geochronological evidence for a new Palaeoproterozoic terrane in southeastern Sweden. Precambrian Res 77:91–103

    Article  Google Scholar 

  • Micheelsen HI (1971) Bornholms Grundfjaed. Meddelelser fra Dansk Geologisk Forening 14:308–349

    Google Scholar 

  • Möller C, Söderlund U (1997) Sveconorwegian high-grade regional reworking in the eastern segment, SW Sweden: cause, character, and consequences. GFF 119:253–254

    Google Scholar 

  • Motuza M, Cecys A, Kotov AB, Salnikova EB (2006) The Zemaiciu Naumiestis granitoids: new evidences of Mezoproterozoic magmatism in Western Lithuania (in press)

  • Obst K, Hammer J, Katzung G, Korich D (2004) The Mesoproterozoic basement in the southern Baltic sea: insights from the G 14–1 off-shore borehole. Int J Earth Sci 93(1):1–12

    Article  Google Scholar 

  • Page LM (2002) Geochronological constraints on the tectonothermal history of the Svecokarelian Orogen of SE Sweden, Sveriges Geologiska Undersökning. SGU Financed External project, Final Report

  • Paterson SR, Miller RB (1998) Mid-crustal magmatic sheets in the Cascades mountains, Washington: implications for magma ascent. J Struct Geol 20(9–10):1345–1363

    Article  Google Scholar 

  • Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363

    Article  Google Scholar 

  • Pignotta GS, Benn K (1999) Magnetic fabric of the Barrington pluton passage, Meguma terrane, Nova Scotia: a two-stage fabric history of syntectonic emplacement. Tectonophysics 307:75–92

    Article  Google Scholar 

  • Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1015–1020

    Article  Google Scholar 

  • Stephens MB, Wahlgren C-H, Weihed P (1994) Geological map of Sweden. Geological Survey of Sweden

  • Sundblad K, Claesson S (2003) The Precambrian of Gotland–a key to the understanding of the geologic environment in the Baltic Sea region. In: Rämö OT, Kosunen PJ, Lauri LS, Karhu JA (eds) Granitic systems - state of the art and future avenues. Abstract volume. Helsinki University Press, pp 102–106

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman & Hall, Bury St Edmunds, p 217

    Google Scholar 

  • Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electron Geosci 5(2):1–23

    Article  Google Scholar 

  • Whalen BW, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discriminations and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Wiklander U (1974) Precambrian petrology, geochemistry and age relations of northeastern Blekinge, southern Sweden. Swedish Geological Survey, Stockholm, p 142

    Google Scholar 

Download references

Acknowledgments

Audrius Čečys thanks Göran Bylund to introduction to the AMS method. Charlotta Janson is acknowledged for helping to measure AMS. Andrius Rimša and Olga Čečienė assisted during the fieldwork. Dr. Czeck and Dr. Bouchez are acknowledged for reviewing the manuscript and providing valuable comments. The work has been supported by the Swedish Research Council to S. Bogdanova, Grant No. G650-199815132000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrius Čečys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čečys, A., Benn, K. Emplacement and deformation of the ca. 1.45 Ga Karlshamn granitoid pluton, southeastern Sweden, during ENE-WSW Danopolonian shortening. Int J Earth Sci (Geol Rundsch) 96, 397–414 (2007). https://doi.org/10.1007/s00531-006-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0114-6

Keywords

Navigation