Advertisement

International Journal of Earth Sciences

, Volume 95, Issue 6, pp 1053–1064 | Cite as

The growth, collapse and quiescence of Teno volcano, Tenerife: new constraints from paleomagnetic data

  • R. Leonhardt
  • H. C. Soffel
Original Paper

Abstract

Tenerife basically consists of three Miocene shield volcanoes, the Anaga, the Teno and Central shield, as well as the Pliocene Cañadas volcano. The temporal evolution and structural significance of each volcano with respect to the history of Tenerife is still a matter of debate. We present paleomagnetic results in order to enhance the view of the volcanic history of the Teno volcano by means of magnetostratigraphy. It is found that the initial subaerial phase shows reverse magnetizations throughout. After two major sector collapses, dominantly normally magnetized lavas extruded. Comparisons of observed magnetic polarities with the geomagnetic polarity timescale show that these volcanic activities occurred within 0.4 Myr between 6.3 and 5.9 Ma. Significantly younger flows, ∼ 5.3 Myr old according to their radiometric age, revealed again normal polarity throughout. The absence of inversely magnetized lavas in-between the two normal periods indicates a volcanic hiatus or erosional phase. The evolutionary sequence and the estimated high production rates for the initial building phase are similar as would be expected for a hotspot volcano. The average geomagnetic field for 6.0 ± 0.2 Ma is close to an axial dipole field showing a slight far-sided/right-handed effect. The field strength, determined by Thellier-type intensity determinations, corresponds to a virtual axial dipole moment of 4.9 × 1022 A m2. This value is approximately half of the present day field strength, but similar to values obtained for the mid-Miocene. It also corresponds to the proposed tertiary low-field level of the geomagnetic dipole moment.

Keywords

Paleomagnetism Magnetostratigraphy Absolute paleointensity Tenerife Teno volcano 

Notes

Acknowledgments

We would like to thank the Medio Ambiente de Tenerife for sampling permission. We are particularly grateful to Juan Carlos Carracedo for his support prior and during the field work and his very helpful comments during preparation of this manuscript. We would like to thank Thomas Walter for his constructive review. Jürgen Matzka and Felix Hufenbecher are acknowledged for their field assistance. Suzan Emiroglu did part of the measurements. We profited from many discussions with David Krása and Christoph Heunemann. Sampling was funded by the German Science Foundation (So72/67-2,3).

References

  1. Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K–Ar data. J Volcanol Geoth Res 44:231–249CrossRefGoogle Scholar
  2. Anguita F, Hernán F (1975) A propagating fracture model versus a hot-spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19CrossRefGoogle Scholar
  3. Anguita F, Hernán F (2000) The Canary Islands origin: a unifying model. J Volcanol Geoth Res 103:1–26CrossRefGoogle Scholar
  4. van den Bogaard P, Schmincke HU (1998) Chronostratigraphy of Gran Canaria. In: Weaver PPE, Schmincke HU, Firth JV, Duffield W (eds) Proceedings of the ODP, Scientific Results, vol 157, College Station, TX (Ocean Drilling Program), pp 127–140Google Scholar
  5. Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes, 356. Blackwell Scientific Publications, OxfordGoogle Scholar
  6. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095CrossRefGoogle Scholar
  7. Cantagrel JM, Arnaud NO, Ancochea E, Fuster JM, Huertas MJ (1999) Repeated debris avalanches on Tenerife and genesis of Las Canadas caldera wall (Canary Islands). Geology 27:739–742CrossRefGoogle Scholar
  8. Carracedo JC (1979) Paleomagnetismo e historia volcanica de Tenerife. Aula de Cultura del Cabildo Insular de Tenerife, Tenerife, Espana, 82Google Scholar
  9. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparison with Hawaiian volcanoes. J Volcanol Geoth Res 94:1–19CrossRefGoogle Scholar
  10. Carracedo JC, Day SJ, Guillou H, Rodriguez Badiola E, Canas JA, Pérez Torrado FJ (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604CrossRefGoogle Scholar
  11. Coe RS, Grommé S, Mankinen EA (1978) Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipol low. J Geophys Res 83:1740–1756Google Scholar
  12. Cox A (1969) Confidence limits for the precision parameter k. Geophys J R Astron Soc 18:545–549Google Scholar
  13. Day R, Fuller MD, Schmidt VA (1977) Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys Earth Planet Inter 13:260–266CrossRefGoogle Scholar
  14. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A 217:295–305CrossRefGoogle Scholar
  15. Fuster JM, Araña V, Brandle JM, Navarro M, Alonso U, Aparicio A (1968) Geologia y Volcanologia de las Islas Canarias: Tenerife, 195. Instituto Lucas Mallada, MadridGoogle Scholar
  16. Guillou H, Carracedo JC, Pérez Torrado FJ, Rodriguez Badiola E (1996) K–Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geoth Res 73:141–155CrossRefGoogle Scholar
  17. Guillou H, Carracedo JC, Duncan RA (2001) K–Ar, 40Ar–39Ar ages and magnetostratigraphy of Brunhes and Matuyama lava sequences from La Palma Island. J Volcanol Geoth Res 106:175–194CrossRefGoogle Scholar
  18. Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614CrossRefGoogle Scholar
  19. Heller R, Merrill RT, McFadden PL (2002) The variation of intensity of the Earth’s magnetic field with time. Phys Earth Planet Inter 131:237–249CrossRefGoogle Scholar
  20. Heller R, Merrill RT, McFadden PL (2003) The two states of paleomagnetic field intensities for the past 320 million years. Phys Earth Planet Inter 135:211–223CrossRefGoogle Scholar
  21. Hoernle K, Schmincke HU (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626Google Scholar
  22. Juárez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the past 160 million years. Nature 394:878–881CrossRefGoogle Scholar
  23. Krása D, Heunemann C, Leonhardt R, Petersen N (2003) Experimental procedure to detect multidomain remanence during Thellier–Thellier experiments. Phys Chem Earth 28:681–687Google Scholar
  24. Kristjansson L, Hardarson BS, Aundunsson H (2003) A detailed palaeomagnetic study of the oldest (∼15 Myr) lava sequence in Northwest Iceland. Geophys J Int 155:991–1005CrossRefGoogle Scholar
  25. Langenheim VAM, Clague DA (1987) The Hawaiian–Emperor volcanic chain. Part II. Stratigraphic framework of volcanic rocks of the Hawaiian Islands. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. U.S. Geological Survey, Denver, pp 55–84Google Scholar
  26. Leonhardt R, Soffel HC (2002) A reversal of the Earth’s magnetic field recorded in mid Miocene lava flows of Gran Canaria: paleointensities. J Geophys Res 107:2299. DOI 10.1029/2001JB000949Google Scholar
  27. Leonhardt R, Hufenbecher F, Heider F, Soffel H (2000) High absolute paleointensity during a mid Miocene excursion of the Earth’s magnetic field. Earth Planet Sci Lett 184:141–154CrossRefGoogle Scholar
  28. Leonhardt R, Matzka J, Menor EA (2003) Absolute paleointensities and paleodirections from Fernando de Noronha, Brazil. Phys Earth Planet Inter 139:285–303CrossRefGoogle Scholar
  29. Leonhardt R, Heunemann C, Krása D (2004a) Analyzing absolute paleointensity determinations: acceptance criteria and the software ThellierTool4.0. Geochem Geophys Geosyst 5:Q12016. DOI 10.1029/2004GC000807Google Scholar
  30. Leonhardt R, Krása D, Coe RS (2004b) Multidomain behavior during Thellier paleointensity experiments: a phenomenological model. Phys Earth Planet Inter 147:127–140CrossRefGoogle Scholar
  31. McDougall I, Schmincke HU (1976) Geochronology of Gran Canaria, Canary Islands: age of shield building volcanism and other magmatic phases. Bull Volcanol 40:57–77Google Scholar
  32. McElhinny MW, McFadden PL (1997) Palaeosecular variation over the past 5 Myr based on a new generalized database. Geophys J Int 131:240–252Google Scholar
  33. McFadden PL, McElhinny MW (1988) The combined analysis of remagnetization circles and direct observations in palaeomagnetism. Earth Planet Sci Lett 87:161–172CrossRefGoogle Scholar
  34. Moore JG, Clague DA (1992) Volcano growth and evolution of the island of Hawaii. Geol Soc Am Bull 104:1471–1484CrossRefGoogle Scholar
  35. Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139CrossRefGoogle Scholar
  36. Paris R, Guillou H, Carracedo JC, Pérez Torrado FJ (2005) Volcanic and morphological evolution of La Gomera (Canary Islands) based on new K/Ar ages and magnetic stratigraphy: implications for oceanic islands evolution. J Geol Soc Lond 162:1–16Google Scholar
  37. Prévot M, Mankinen EA, Coe RS, Grommé S (1985) The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models. J Geophys Res 90:10417–10448CrossRefGoogle Scholar
  38. Riisager P, Riisager J (2001) Detecting multidomain magnetic grains in Thellier paleointensity experiments. Phys Earth Planet Inter 125:111–117CrossRefGoogle Scholar
  39. Schmincke HU (1973) Magmatic evolution and tectonic regime in the Canary, Madeira, and Azores Islands groups. Geol Soc Am Bull 84:633–648CrossRefGoogle Scholar
  40. Schmincke HU (1979) Age and crustal structure of the Canary Islands. J Geophys 46:217–224Google Scholar
  41. Selkin PA, Tauxe L (2000) Long-term variations in paleointensity. Philos Trans R Soc Lond 358:1065–1088CrossRefGoogle Scholar
  42. Shcherbakov VP, Solodovnikov GM, Sycheva NK (2002) Variations in the geomagnetic dipole during the past 400 million years (Volcanic rocks). Izv Acad Sci USSR Phys Solid Earth Engl Trans 38:113–119Google Scholar
  43. Smith KL, Milnes AR, Eggleton RA (1987) Weathering of basalts: formation of iddingsite. Clays Clay Miner 35:418–428CrossRefGoogle Scholar
  44. Thirlwall MF, Singer BS, Marriner GF (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geoth Res 103:247–297CrossRefGoogle Scholar
  45. Valet JP, Brassart J, Le Meur I, Soler V, Quidelleur X, Tric E, Gillot PY (1996) Absolute paleointensity and magnetomineralogical changes. J Geophys Res 101:25029–25044CrossRefGoogle Scholar
  46. Valet JP, Brassat J, Quidelleur X, Soler V, Gillot PY, Hongre L (1999) Paleointensity variations across the last geomagnetic reversal at La Palma, Canary Islands, Spain. J Geophys Res 104:7577–7598CrossRefGoogle Scholar
  47. Walter TA (2003) Buttressing and fractional spreading of Tenerife, an experimental approach on the formation of rift zones. Geophys Res Lett 30:1296. DOI 10.1029/2002GL016610Google Scholar
  48. Walter TR, Schmincke HU (2002) Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). Int J Earth Sci (Geol Rundsch) 91:615–628CrossRefGoogle Scholar
  49. Watts AB (1994) Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary islands. Geophys J Int 119:648–666Google Scholar
  50. Watts AB, Masson DG (2001) New sonar evidence for recent catastrophic collapses of the north flank of Tenerife, Canary Islands. Bull Volcanol 63:8–19CrossRefGoogle Scholar
  51. Watts AB, Peirce C, Collier J, Dalwood R, Canales JP, Henstock TJ (1997) A seismic study of lithospheric flexure in the vicinity of Tenerife, Canary Islands. Earth Planet Sci Lett 146:431–447CrossRefGoogle Scholar
  52. Wilson RL (1970) Permanent aspects of the Earth’s non-dipol magnetic field over the Upper Tertiary times. Geophys J R Astron Soc 19:417–437Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department for Earth and Environmental SciencesLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations