Skip to main content
Log in

Fluid focusing and back-reactions in the uplifted shoulder of the Rhine rift system: a clay mineral study along the Schauenburg Fault zone (Heidelberg, Germany)

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A retrograde sequence of fluid-controlled, low-temperature mineral reactions has been preserved along an east-west striking, dextral-oblique-slip fault in the uplifted Rhine Graben shoulder. This fault (the Schauenburg Fault, near Heidelberg), juxtaposes Permian rhyolite against Carboniferous (Variscan) granite and shows syn- or post-rift displacement of the north–south trending, eastern boundary fault of the rift basin. Both mineral texture and rock fabric indicate that the fault forms a site of high rock permeability and fluid flow, and records the exhumation and fluid-rock history of the rift shoulder since the Mesozoic. The reaction sequence and mineral compositions of the clay minerals within the cataclasite, and adjacent granite and rhyolite lithologies, document progressively decreasing fluid temperatures, with back-reactions of pure 2M1 illite to 1Md (R3) illite-smectite, and eventually smectite and kaolinite assemblages. Compositional variations are attributed to Tertiary to Recent fluid flushing of the fault zone associated with rift flank uplift, and with progressive dilution of the electrolyte-rich, acidic to neutral hydrothermal brines by down-flowing electrolyte-poor, meteoric waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abad I, Nieto F, Peacor DR, Velilla N (2003) Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuna (Spain). Clay Miner 38:1–23

    Article  Google Scholar 

  • Abebe T (2000) Geological limitations of a geothermal system in a continental rift zone: example the Ethiopian rift valley. In: Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan, May 28–June 10

  • Andrae A, Osann A (1893) Erläuterungen zur Geologie des Blattes Heidelberg. 5. Auflage von Hans Thürach (1995) Mitt Bad Geol L-Anst 2:345–388

    Google Scholar 

  • Appelo CAJ, Postma D (1999) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 536

  • Aquilina L, Pauwels H, Genter A, Fouillac C (1997) Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: geochemical investigations of a geothermal reservoir. Geochim Cosmochim Acta 61:4281–4295

    Article  Google Scholar 

  • van Balen RT, Cloetingh SAPL (1993) Stress-induced fluid flow in rifted basins. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development. American Association of Petroleum Geologists, Tulsa, Okalahoma, pp 87–98

    Google Scholar 

  • Bartels J, Kühn M, Pape H, Clauser C (2000) A new aquifer simulation tool for coupled flow, heat transfer, multi-species transport and chemical water-rock-interaction. In: Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan

  • Behr H-J, Horn EE, Frentzel-Beyme K, Reutel C (1987) Fluid inclusions characteristics of the Variscan and post-Variscan mineralizing fluids in the FRG. Chem Geol 61:273–285

    Article  Google Scholar 

  • Bender K (1995) Herkunft und Entstehung der Mineral-und Thermalwässer im nördlichen Schwarzwald. Heidelberger Geowissenschaftliche Abhandlungen: Band 85; Ruprecht-Karls-Universität Heidelberg, p 145

    Google Scholar 

  • Bove DJ, Eberl DD, McKarty DK, Meeker GP (2002) Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado. Am Mineral 87:1546–1556

    Google Scholar 

  • Brindley GW, Brown G (eds) (1980) Crystal structures of clay minerals and their X-ray identification. Monograph 5: Mineralogical Society London, p 326

    Google Scholar 

  • Brockamp O, Clauer N, Zuther M (2003) Authigenic sericite record of a fossil geothermal system: the Offenburg trough, central Black Forest, Germany. Int J Earth Sci 92:843–851

    Article  Google Scholar 

  • Carlé W (1958) Rezente und fossile Mineral- und Thermalwässer im Oberrheintalgraben und seiner weiteren Umgebung. Jber Mitt Oberrh Geol Ver 40:77–105

    Google Scholar 

  • Carlé W (1975) Die Mineral- und Thermalwässer von Mitteleuropa. Wissenschaftliche Verlagsgesellschaft mbH, p 643

  • Clauer N, O’ Neil JR, Furlan S (1995) Clay minerals as record of temperature conditions and duration of thermal anomalies in the Paris Basin, France. Clay Miner 30:1–13

    Article  Google Scholar 

  • Clauser C, Griesshaber E, Neugebauer H (2002) Decoupled thermal and mantle helium anomalies: implications for the transport regime in continental rift zones. J Geophysical Res 107(B11):1-1–1-16

    Google Scholar 

  • Dong H, Peacor DR, Freed RL (1997) Phase relations among smectite, R1 illite-smectite and illite. Am Mineral 82:379–391

    Google Scholar 

  • Durst P, Vuataz FD (2000) Fluid-rock interactions in hot dry rock reservoirs. A review of the HDR sites and detailed investigations of the Soultz-sous-Forets system. In: Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28–June 10

  • Ehrenberg SN, Aagaard P, Wilson MJ, Fraser AR, Duthie DM (1992) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. The Mineralogical Society, pp 325–352

  • Evans JP (1990) Textures, deformation mechanisms and the role of fluids in the cataclastic deformation of granitic rocks. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics. Geological Society Special Publication 54:29–39

    Google Scholar 

  • Frey M (1987) Very low-grade metamorphism of clastic sedimentary rocks. In: Frey M (eds) Low temperature metamorphism. Chapman and Hall, Blackie, pp 9–58

    Google Scholar 

  • Gautschi A (2000) Hydrogeology of a fractured shale (Opalinus clay): Implications for deep geological disposal of radioactive wastes. Hydrogeol J 9:97–107

    Article  Google Scholar 

  • Grathoff GH, Moore DM (1996) Illite polytype quantification using WILDFIRE calculated X-ray diffraction patterns. Clays Clay Miner 44:834–842

    Article  Google Scholar 

  • Hess JC, Lippolt HJ (1996) Numerische Stratigraphie permokarbonischer Vulkanite Zentraleuropas. Geol Jb Hessen III: Odenwald 124:39–46

    Google Scholar 

  • Hower J, Mowatt TC (1966) The mineralogy of illites and mixed-layer illite/montmorillo-nites. Am Mineral 51:825–854

    Google Scholar 

  • Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180

    Article  Google Scholar 

  • Illies JH (1968) Graben tectonics as related to crust-mantle interaction. In: Illies JH, Mueller S (eds) Graben problems. International Upper Mantle Project, Scientific Report 27

  • Illies JH, Fuchs K (1974) Approaches to taphrogenesis. Inter-Union Commission on Geodynamics Scientific Report 8, Stuttgart

  • Inoue A, Meunier A, Beaufort D (2004) Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores Kakkonda Japan. Clays Clay Miner 52(1):66–84

    Article  Google Scholar 

  • Kim JW, Peacor DR, Tessier D, Elsass F (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner 43:51–57

    Article  Google Scholar 

  • Knipe RJ (1993) The influence of fault zone processes and diagenesis on fluid flow. In: Horbury AD, Robinson AG (eds) Diagenesis and basin development. Am Assoc Pet Geol Stud Geol 36:135–148

    Google Scholar 

  • Lampe C, Person M, Nöth S, Ricken W (2001) Episodic fluid flow within continental rift basins: some insights from field data and mathematical models of the Rhine Graben. Geofluids I:42–52

    Article  Google Scholar 

  • Laubscher H (2001) Plate interactions at the southern end of the Rhine Graben. Tectonophysics 343(1–2):1–19

    Article  Google Scholar 

  • Lippolt HJ, Kirsch H, Plein E (1990) Karbonische und permische Vulkanite aus dem Untergrund des nördlichen Oberrheingrabens: Art, Altersbestimmung und Konsequenz. Jber Mitt Oberrhein Geol Ver 2:227–242

    Google Scholar 

  • Marbach T (2002) Fluid-rock interaction history of a faulted rhyolite-granite contact, eastern Rhine Graben Shoulder, SW-Germany: alteration processes determined by Sr–Pb-isotopes, Th–U-disequilibria and elemental distributions. PhD thesis, University of Heidelberg, p 140

  • Marbach T, Kober B, Mangini A, Warr L, Schleicher A (in press) Mobility of U–Th radionuclides connected with fault porosity: a case study of the Schauenburg Fault, Rhine Graben Shoulder, Germany. Phys Chem Earth

  • May F, Hoernes S, Neugebauer HJ (1996) Genesis and distribution of mineral waters as a consequence of recent lithospheric dynamics: the Rhenish Massif, Central Europe. Geol Rundsch 85:782–799

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, p 378

  • Morrow CA, Radney B, Byerlee JD (1984) Permeability of fault gouge under confining pressure and shear stress. J Geophysical Res B 89:3193–3200

    Article  Google Scholar 

  • Oertel G (1985) The relationship of strain and preferred orientation of phyllosilicates grains in rocks: a review. Tectonophysics 100:413–447

    Article  Google Scholar 

  • Pauwels H, Fouillac C, Fouillac AM (1993) Chemistry and isotopes of deep geothermal salinge fluids in the Upper Rhine Graben: origin of compounds and water rock interactions. Geochim Cosmochim Acta 57:2737–2749

    Article  Google Scholar 

  • Peacor DR (1992) Diagenesis and low-grade metamorphism of shales and slates. In: Buseck PR (ed) Minerals and reactions at atomic scale: transmission electron microscopy. Rev Mineral 27:335–380

    Google Scholar 

  • Person M, Garven G (1994) A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution. Geol Sci Am Bull 106:461–475

    Article  Google Scholar 

  • van der Pluijm BA, Ho N, Peacor D (1994) High-resolution X-ray texture goniometry. J Struct Geol 16(7):1029–1032

    Article  Google Scholar 

  • Pribnow D, Clauser C (2000) Heat and fluid flow at the Soultz hot dry rock system in the Rhine Graben. In: Proceedings World Geothermal Congress Kyushu-Tohoku, Japan, May 28-June10

  • Prodehl C, Mueller St, Haak V (1995) The European Cenozoic rift system: Continental rifts, evolution, structure, tectonics. In: Olsen KH (ed) Developments in Geotectonics 25:133–212

  • Robertson ID, Eggleton RA (1991) Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays Clay Miner 39(2):113–126

    Article  Google Scholar 

  • Schmidt SM, Casey M (1986) Complete fabric analysis of some commonly observed quartz c-axis patterns. In: Hobbs BE, Heard HC (eds) Mineral, rock deformation: laboratory studies. Am Geophys Un Geophys Monogr 36:263–287

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21(1):6-1–6-17

    Article  Google Scholar 

  • Sibson RH (1994) Crustal stress, faulting and fluid flow. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins. Geological Society Special Publication 78:69–84

    Google Scholar 

  • Solum JG, van der Pluijm BA, Peacor DR, Warr LN (2003) Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl Fault, southern California. J Geophys Res 108(B5):5-1–5-12

    Article  Google Scholar 

  • Srodon J, Eberl D (1984) Illite. In: Baily SW (ed) Micas. Reviews in Mineralogy 13:495–544

    Google Scholar 

  • Stanislavsky E, Gvirtzman H (1999) Basin-scale migration of continental-rift brines: paleohydrologic modeling of the Dead Sea basin. Geology 27(9):791–794

    Article  Google Scholar 

  • Stober I, Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4:143–151

    Article  Google Scholar 

  • Stober I, Bucher K (2000) Herkunft der Salinität in Tiefenwässern des Grundgebirges unter besonderer Berücksichtigung der Kristallinwässer des Schwarzwaldes. Grundwasser 3(5):125–140

    Article  Google Scholar 

  • Stober I, Bucher K (1999) Origin of salinity of deep groundwater in crystalline rocks. Terra Nora 11:181–185

    Article  Google Scholar 

  • Velde B (1965) Experimental determination of muscovite polymorph stabilities. Am Mineral 50:436–449

    Google Scholar 

  • Velde B (1985) Developments in sedimentology: clay minerals, a physico-chemical explanation of their occurrence. Elsevier, Amsterdam, p 427

    Google Scholar 

  • Warr LN, Cox S (2001) Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand. Geological Society London, Special Publication 186:85–101

  • Warr LN, Nieto F (1998) Crystallite thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: a TEM and XRD study of clay-mineral crystallinity-index standards. Can Mineral 36:1453–1474

    Google Scholar 

  • Warr LN, Rice AHN (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorphic Geol 12:141–152

    Article  Google Scholar 

  • Wenk HR (ed) (1985) Preferred orientation in deformed rocks. Academic, Orlando

    Google Scholar 

  • Wibberley C (1999) Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones? J Struct Geol 21:1219–1227

    Article  Google Scholar 

  • Wintsch RP, Christoffersen R, Kronenberg AK (1995) Fluid-rock reaction weakening of fault zones. J Geophys Res 100(B7):13021–13032

    Article  Google Scholar 

  • Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim Cosmochim Acta 8(5–6):225–280

    Article  Google Scholar 

  • Zhao G, Peacor DR, McDowell SD (1999) Retrograde diagenesis of clay minerals in the Freda Sandstone, Wisconsin. Clays Clay Miner 47:119–130

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded through the GRK 273 “Fluid–rock interaction” grant of the DFG, Germany. The research was also supported by the “Landesgraduiertenförderung” Germany and the US National Science Foundation (EAR-0230055). We thank Donald Peacor (Michigan) and Margot Isenbeck-Schröter (Heidelberg) for helpful discussions, and Ulrich Glasmacher for reviewing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Schleicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleicher, A.M., Warr, L.N. & van der Pluijm, B.A. Fluid focusing and back-reactions in the uplifted shoulder of the Rhine rift system: a clay mineral study along the Schauenburg Fault zone (Heidelberg, Germany). Int J Earth Sci (Geol Rundsch) 95, 19–33 (2006). https://doi.org/10.1007/s00531-005-0490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0490-3

Keywords

Navigation