Skip to main content

Advertisement

Log in

Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands)

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The use of genetic algorithms in geophysical inverse problems is a relatively recent development and offers many advantages in dealing with the non-linearity inherent in such applications. We have implemented a genetic algorithm to efficiently invert a set of gravity data. Employing several fixed density contrasts, this algorithm determines the geometry of the sources of the anomaly gravity field in a 3-D context. The genetic algorithms, based on Darwin’s theory of evolution, seek the optimum solution from an initial population of models, working with a set of parameters by means of modifications in successive iterations or generations. This searching method traditionally consists of three operators (selection, crossover and mutation) acting on each generation, but we have added a further one, which smoothes the obtained models. In this way, we have designed an efficient inversion gravity method, confirmed by both a synthetic example and a real data set from the island of Fuerteventura. In the latter case, we identify crustal structures related to the origin and evolution of the island. The results show a clear correlation between the sources of gravity field in the model and the three volcanic complexes recognized in Fuerteventura by other geological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel Monem A, Watkins ND, Gats PW (1971) Potasium-argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary islands: Lanzarote, Fuerteventura, Gran Canaria and La Gomera. Am J Sci 271:490–521

    Google Scholar 

  • Al-Chalabi M (1971) Some studies relating to nonuniqueness in gravity and magnetic inverse problems. Geophysics 36(5):835–855

    Google Scholar 

  • Ancochea E, Brändle JL, Cubas CR, Hernán F, Huertas MJ (1996) Volcanic complexes in the eastern ridge of the Canary Islands: The Miocene activity of the island of Fuerteventura. J Volcanol Geotherm Res 70:183–204

    Google Scholar 

  • Araña V, Camacho AG, Garcia A, Montesinos FG, Blanco I, Vieira R, Felpeto A (2000) Internal structure of Tenerife (Canary islands) based on gravity, aeromagnetic and volcanological data. J Volcanol Geotherm Res 103(4):43–64

    Google Scholar 

  • Arnoso J (1996) Modelización y evaluación de efectos indirectos sobre las mareas terrestres en el área de las Islas Canarias. Ph D Thesis, Univ Complutense of Madrid, pp 1–175

  • Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In: Grefenstette JJ (ed) Proceedings of second international conference on genetic algorithms. Lawrence Erlbaum Associates, Hillsdales, pp 14–21

  • Banda E, Dañobeitia JJ, Suriñach E, Ansorge J (1981) Features of crustal structure under the Canary Islands. Earth Planet Sci Lett 55:11–24

    Google Scholar 

  • Barbosa VCF, Silva JBC, Medeiros WE (1997) Gravity inversion of basements relief using approximate equality constraints on depths. Geophysics 62:1745–1757

    Google Scholar 

  • Beltrao JF, Silva JBC, Costa JC (1991) Robust polynomial fitting method for regional gravity estimation. Geophysics 56(1):80–89

    Google Scholar 

  • Billings S, Kennett B, Sambridge M (1994) Hypocentre location: genetic algorithms incorporating problem specific information. Geophys J Int 118:693–706

    Google Scholar 

  • Blickle T, Thiele L (1995) A comparison of selection schemes used in genetic algorithms. TIK-Report, 11, 2nd edn. Computer Engineering and Communication Networks Lab (TIK), Zurich, pp 1–65

    Google Scholar 

  • Boschetti F, Denith MC, List RD (1996) Inversion of seismic refraction data using genetic algorithms. Geophysics 61:1715–1727

    Google Scholar 

  • Boschetti F, Denith MC, List RD (1997) Inversion of potential field data by genetic algorithms. Geophys Prospect 45:461–478

    Google Scholar 

  • Bosshard E, MacFarlane DJ (1970) Crustal structure of the W Canary Islands from seismic refraction and gravity data. J Geophys Res 75:4901–4918

    Google Scholar 

  • Camacho AG, Montesinos FG, Vieira, R (1997) A three-dimensional gravity inversion applied to S Miguel island (Azores). J Geophys Res 102(B4):7717–7730

    Google Scholar 

  • Camacho AG, Montesinos FG, Vieira R (2000) Gravity inversion by means of growing bodies. Geophysics 65(1):95–101

    Google Scholar 

  • Camacho AG, Montesinos FG, Vieira R, Arnoso J (2001) Modelling of crustal anomalies of Lanzarote (Canary Islands) in light of gravity data. Geophys J Int 147:1–22

    Google Scholar 

  • Canales JP, Ito G, Detrick RS, Siton J (2002) Cristal thickness along the western Galápagos Spreading centerand the compesation of the Galápagos hotspot swell. Earth Planet Sci. Lett 203:311–327

    Google Scholar 

  • Cantagrel JM, Fúster JM, Pin C, Renaud U, Ibarrola E (1993) Age Miocène inférieur des carbonatites de Fuerteventura (23 Ma: U–Pb zircon) et le magmatisme précoce d’une île océanique (îles Canary Islands). CR Acad Sci Paris 316:1147–1153

    Google Scholar 

  • Carlson AL, Raskin GS (1984) Density of oceanic crust. Nature 311:555–558

    Google Scholar 

  • Carracedo JC (1996) A simple model for the genesis of large gravitational landslide hazards in the Canary Islands. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano Instability on the Earth and Terrestrial Planets. Geol Soc London, Spec Publ 110, pp 125–135

    Google Scholar 

  • Chandrasekhar DV, Mishra DC, Poornachandra Rao GVS, Mallikharjuna Rao J (2002) Gravity and magnetic signatures of volcanic plugs related to Deccan volcanism in Saurashtra, India and their physical and geochemical properties. Earth Planet Sci Lett 201:277–292

    Google Scholar 

  • Chu PCH (1997) A genetic algorithm approach for combinatorial optimisation problems. PhD Thesis. The Management school, Imperial College of Science, Technology and Medicine, Londres

  • Coello J, Cantagrel JM, Hernán F, Fúster JM, Ibarrola E, Ancochea E, Casquet C, Jamond C, Díaz de Téran JR, Cendrero A (1992) Evolution of the eastern volcanic ridge of the Canary Islands based on new K-Ar data. J Volcanol Geotherm Res 53:251–274

    Google Scholar 

  • Cordell L (1973) Gravity analysis using an exponencial density-depth function-San Jacinto Graben, California. Geophysics 38(4):684–690

    Google Scholar 

  • Cubas CR, Hernan F, Ancochea E, Brandle JL (1992) El edificio sur (Jandía) de la serie I de Fuerteventura: rasgos generales. Geogaceta 11:79–81

    Google Scholar 

  • Dañobeitia JJ (1980) Interpretación de la estructura de la corteza en el archipiélago Canario a partir de perfiles sísmicos de profundidad. Ph Thesis, Universidad Complutense de Madrid, pp1–91

  • Dañobeitia JJ, Canales JP (1994) An estimation of the elastic thickness of the lithosphere in the Canary Archipelago using admittance function. Geophys Res Lett 21(24):2649–2652

    Google Scholar 

  • Dañobeitia JJ, Canales JP (2000) Magmatic underplating in the Canary Archipelago. J Volcanol Geotherm Res 103:27–41

    Google Scholar 

  • Dañobeitia JJ, Collette BJ (1989) Estudio mediante sísmica de reflexión de un grupo de estructuras submarinas situadas al Norte y Sur del archipiélago Canario. Acta Geol Hisp 24:147–163

    Google Scholar 

  • Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, pp 1–385

  • De Jong KA (1975) An analysis of the behaviour of a class of genetic adaptive systems. PhD Thesis, Dept Computer and Communication Sciences, Univ de Michigan, Ann Arbor

  • Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J Int 156:411–425

    Google Scholar 

  • Feraud G (1981) Datations des reseaux de dykes et de roches volcaniques sous-marines par les méthodes K–Ar et 40 Ar–39 Ar Utilisation des dykes comme marqueurs de paleocontraintes, PhD Tesis, Univ Nice, pp 1–146

  • Folger DW, McCullough JR, Irwin BJ, Dodd JE, Strahle WJ, Polloni CF, Bouse RM (1990) Map showing free-air gravity anomalies around the Canary Islands, Spain. Miscellaneous Field Studies Map, MF-2098-B, p (1 sheet). US Geol Surv, United States

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison, Wesley, Reading, pp 1–412

    Google Scholar 

  • Grefenstette JJ (1986) Optimization of control parameter for genetic algorithms. IEEE Transact Syst Man Cybernet SMC-16 1:122–128

    Google Scholar 

  • Kauahikaua J, Hildenbrand T, Webring M (2000) Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models. Geology 28 (10):883–886

    Google Scholar 

  • Krastel S, Schmincke HU, Jacobs CL, Rihm R, Le Bas TP, Alibés B (2001) Submarine landslides around the Canary Islands. J Geophys Res 106(B3):3977–3997

    Google Scholar 

  • MacFarlane DJ, Ridley WI (1969) An interpretation of gravity data for Lanzarote, Canary Islands. Earth Planet Sci Lett 6:431–436

    Google Scholar 

  • Malengreau B, Lenat JF, Froger JL, (1999) Structure of Reunion Island (Indian Ocean) inferred from the interpretation of gravity anomalies. J Volcanol Geotherm Res 88:131–146

    Google Scholar 

  • Medeiros WE, Silva JBC (1996) Geophysical inversion using approximate equality constraints. Geophysics 61(2):1678–1688

    Google Scholar 

  • Michalewicz Z (1994) Genetic algorithms + Data structures=Evolution programs, Springer, Berlin, 2nd extended edition. pp 1–340

  • Montesinos FG (2002) In: Cabildo de Fuerteventura (ed) Inversión gravimétrica 3D por técnicas de evolución, Aplicación a la isla de Fuerteventura, PhD Thesis (1999), Universidad Comlutense de Madrid, pp 1–209

  • Montesinos FG, Camacho AG, Nunes JC, Sousa C, Vieira R (2003) A 3-D gravity model for a volcanic crater in Terceira Island (Azores). Geophys J Inter 154:393–406

    Google Scholar 

  • Montesinos FG, Arnoso J, Benavent M, Vieira R (2004) Estudio gravimétrico en El Hierro (I. Canarias): Resultados preliminares. Proceedings of IV Asamblea Hispano-Portuguesa de Geodesia y Geofísica, pp 359–360

  • National Geophysical Data Center (NGDC) (1988) Data announcement 88-MGG-02, Digital relief of the surface of the Earth. NOAA, National Geophysical Data Center, Boulder

  • Nettleton LL (1939) Determination of density for reduction of gravimeter observations. Geophysics 4:176–183

    Google Scholar 

  • Pick M, Pícha J, Vyskočil, V (1973) Theory of the Earth’s gravity field. Elsevier, Amsterdam, pp 1–438

    Google Scholar 

  • Ranero CR, Torne M, Banda E (1995) Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary swell. Mar Geophys Res 17:519–534

    Google Scholar 

  • Reeves CR (1993) Using genetic algorithms with small populations. In: Proceedings of 5th International conference on genetic algorithms. University of Illinois at Urbana-Champaign. Morgan Kaufmann Publishers, pp 92–99

  • René RM (1986) Gravity inversion using open, reject, and “shape of-anomaly” fill criteria. Geophysics 51:988–994

    Google Scholar 

  • Roest WR, Dañobeitia JJ, Verhoef J, Collette BJ (1992) Magnetic anomalies in the Canary Basin and the Mesozoic evolution of the Central North Atlantic. Mar Geophys Res 14:1–24

    Google Scholar 

  • Rothman DH (1985) Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics 50:2784–2796

    Google Scholar 

  • Rousset D, Lesquer A, Bonneville A, Lenat JF (1989) Complete gravity study of Piton de la Founaise volcano, Réunion Island. J Volcanol Geotherm Res 36:37–52

    Google Scholar 

  • Rymer H, Brown CG (1986) Gravity field and the interpretation of volcanisc structures: geological discrimination and temporal evolution. J Volcanol Geotherm Res 27:229–254

    Google Scholar 

  • Scales JA, Tenorio L (2001) Tutorial Prior information and uncertainty in inverse problem. Geophysics 66(2):389–397

    Google Scholar 

  • Schmincke HU (1982) Volcanic and chemical evolution of the Canary Islands. In: Von Rad U, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African Continental Margin. Springer, Berlin, Heidelberg New York, pp 273–301

    Google Scholar 

  • Schwarz KP (1979) Geodetic improperly posed problems and their regularization. Bolletino di Geodesia e Scienze Affini 3:389–416

    Google Scholar 

  • Sen M, Stoffa PL (1995) Global optimization methods in geophysical inversion, Advances in exploration geophysics, 4th ed. Elsevier, Amsterdam, pp 1–281

    Google Scholar 

  • Silva JBC, Medeiros WE, Barbosa VCF (2001) Potential-field inversion: choosing the appropriate technique to solve a geologic problem. Geophysics 66(2):511–520

    Google Scholar 

  • Socías I, Mezcua J (1996) Levantamiento aeromagnético del archipiélago canario. Instituto Geográfico Nacional Madrid Publ Técnica 35:1–28

  • Spears WM, De Jong KA (1991) On the virtues of parameterized uniform crossover. In: Belew R, Booker L (eds) Proceedings of the fourth international conference on genetic algorithm, La Jolla, Morgan Kaufmann, San Mateo, pp 230–236

  • Stillman CJ (1999) Giant Miocene landslides and the evolution of Fuerteventura, Canary Islands. J Volcanol Geotherm Res 94:89–104

    Google Scholar 

  • Stillman CJ, Fuster J, Bennel-Baker M, Muñoz M, Smewing J, Sagredo J (1975) Basal complex of Fuerteventura is an oceanic intrusive complex with rift-system affinities. Nature 257:469–471

    Google Scholar 

  • Tarantola A (1987) The inverse problem theory: Methods for data fitting and model parameter estimation. Elsevier Science Publ Co, Amsterdam, pp 1–613

    Google Scholar 

  • Zucca JJ, Hill DP, Kovach RL (1982) Crustal structure of Muna Loa Volcano, Hawaii from seismic refraction and gravity data. Bull Seismol Soc Am 72:1535–1550

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Projects: REN2001-2271/RIES (Plan Nacional I+D, MCYT), REN2002-00544/RIES (Plan Nacional I+D, MCYT). One of the authors (J. Arnoso) is supported by the program I3Pof the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F G Montesinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesinos, F.G., Arnoso, J. & Vieira, R. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). Int J Earth Sci (Geol Rundsch) 94, 301–316 (2005). https://doi.org/10.1007/s00531-005-0471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0471-6

Keywords

Navigation