Skip to main content
Log in

Tectonic framework and extensional pattern of the Malaguide Complex from Sierra Espuña (Internal Betic Zone) during Jurassic–Cretaceous: implications for the Westernmost Tethys geodynamic evolution

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mapping, lithostratigraphic, biostratigraphic and structural detailed analyses in Sierra Espuña area (Internal Betic Zone, SE Spain) have allowed us to reconstruct the Jurassic–Cretaceous evolution of the Westernmost Mesomediterranean Microplate palaeomargin and, by correlation with other sectors (Northern Rift, central and western Internal Betic Zone), to propose a geodynamic evolution for the Westernmost Tethys. Extension began from Late Toarcian, when listric normal faults activated; these faults are arranged in three categories: large-scale faults, separating hectometric cortical blocks; main faults, dividing the former blocks into some kilometre-length blocks; and secondary faults, affecting the kilometric blocks. This fault ensemble, actually outcropping, in the Sierra Espuña area, broke the palaeomargin allowing the westerly Tethyan Oceanic aperture with an extension at about 17.2%. Extension was not homogeneous in time, being the Late Toarcian to the Dogger–Malm boundary the period when blocks underwent the greatest movement (rifting phase), leading to the drowning of the area (8.2% extension). During the Malm (drifting phase) extension followed (5.7%), while during the Cretaceous a change to pelagic facies is recorded with an extension of about 3.3% (post-drift stage). This evolution in the Westernmost Tethys seems to be related to areas out of the limit of significant crustal extension in the hanging wall block of the main cortical low-angle fault of the rifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen PA, Allen JR (1990) Basin analysis: principles and applications.. Blackwell, Oxford, pp 1–451

    Google Scholar 

  • Biju-Duval B, Dercourt J, Le Pichon X (1977) From the Tethys ocean to the Mediterranean seas: a plate tectonic model of the evolution of the western Alpine system. In: Biju-Duval B, Montadert L (eds) International symposium on the structural history of the Mediterranean basins, Split (Yugoslavia), 1976. Editions Technip, Paris, pp 143–164

  • Boutakiout M, Elmi S (1996) Tectonic and eustatic controls during the lower and middle Jurassic of the South Rif Ridge (Morocco) and their importance for the foraminifera-communities, vol 1–2. Geo-research Forum, Transtec Publications, Zurich, pp 237–248

  • Caracuel JE, Sandoval J, Martín-Martín M, Estévez A, Martín-Rojas I (2001) Datos preliminares del Jurásico del perfil de Malvariche en Sierra Espuña (Complejo Maláguide; Zonas Internas Béticas). XVII Jornadas de Paleontología S.E.P. SEPAZ 5.1, 271–278

  • Caracuel JE, Sandoval J, Martín-Martín M, Martín-Rojas I, Estévez A (2005) Jurassic biostratigraphy and paleoenvironmental evolution of the Maláguide Complex from Sierra Espuña (Internal Betic Zone, SE Spain). Geobios (in press)

  • Channell JE, D’Argento BD, Horvath F (1979) Adria, the African promontory in Mesozoic Mediterranean palaeogeography. Earth Sci Rev 15:213–292

    Article  Google Scholar 

  • Darros de Matos RM (1993) Geometry of the hanging wall above a system of listric normal faults. A numerical solution. Am Assoc Pet Geol Bull 77(11):1831–1859

    Google Scholar 

  • Davinson I (1986) Listric normal fault profiles: calculation using bed-length balance and fault displacement. J Struct Geol 8(2):209–210

    Article  Google Scholar 

  • Debelmas J, Mascle G (1991) Les grandes structures géologiques. Masson, Paris, pp 1–299

    Google Scholar 

  • Dula WF (1991) Geometric model of listric normal faults and rollover folds. Am Assoc Pet Geol Bull 75(10):1609–1625

    Google Scholar 

  • Elliot D (1983) The construction of balanced cross-sections. J Struct Geol 5(2):101

    Article  Google Scholar 

  • Fallot P (1929) Esquisse géologique du Massif de la Sierra Espuña (Prov. de Murcia). Bol R Soc Esp Hist Nat 29:199–215

    Google Scholar 

  • Falvey DA (1974) The development of continental margins in plate tectonic theory. J Aust Pet Explor Assoc 14:95–106

    Google Scholar 

  • Geyer OF, Hinkelbein K (1971) Eisenoolithische Kondensations-Horizonte im Lias der Sierra de Espuña (Provinz Murcia, Spanien). Neues Jahr Geol Paläontol Monatshefte 10:398–414

    Google Scholar 

  • Geyer OF, Hinkelbein K (1974) Las Oolitas ferruginosas del Jurásico de la Sierra de Espuña (prov. de Murcia). Acta Geol Hispán 9–3:102–106

    Google Scholar 

  • Gibbs AD (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. J Struct Geol 5:153–160

    Article  Google Scholar 

  • Guerrera F, Martín-Algarra A, Perrone V (1993) Late Oligocene–Miocene syn-/late-orogenic successions in Western and Central Mediterranean chains from Betic Cordillerra to Southern Apennines. Terranova 5:525–544

    Google Scholar 

  • Guerrera F, Martín-Martín M, Perrone V, Tramontana M (2005) Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean): consequences for Western Mediterranean geodynamics. Terranova 17(4):358–367

    Google Scholar 

  • Hanne D, White N, Lonergan L (2003) Subsidence analyses from the Betic Cordillera, southeast Spain. Basin Res 15(1):1–23

    Article  Google Scholar 

  • Houseman G, England PC (1986) A dynamical model of lithosphere extension and sedimentary basin formation. J Geophys Res 91:719–729

    Article  Google Scholar 

  • James NP, Mountjoy EW (1983) Shelf-slope break in fossil carbonate platform. In: Stantely, Moore (eds) “The shelf-break: critical interface on continental margin”. Special Publication of Society Economy Paleontology and Minery 33:189–212

  • Kampschuur W, Langerberg CW, Baena J, Velando F, García-Monzón F, Paquet J, Rondeel HE (1974) Mapa y Memoria Explicativa del Mapa Geológico de España 1/50000, Hoja de Coy (932). Instituto Geológico y Minero de España, pp 1–32

  • Kendall CG, Schlager W (1981) Carbonates and relative changes in sea-level. In: Cita, Ryan (eds) “Carbonate platforms of the passive-type continental margins, present and past”. Mar Geol 44:181–212

  • Lonergan L (1991) Structural evolution of the Sierra Espuña, Betic Cordillera, SE Spain. Thesis, Oxford University, pp 1–154

  • Maate A (1996) Estratigrafía y Evolución Paleogeográfica alpina del Dominio Gomáride (Rif Interno, Marruecos). Tesis, Universidad de Granada, pp 1–399

  • MacGillavry HJ, Geel T, Roep Th B, Soediono H (1963) Further notes on the geology of the Betic of Málaga, the Subbetic, and the Zone Between these two Units, in the Region of Vélez Rubio (Southern Spain). Geol Rundsch 53:233–259

    Article  Google Scholar 

  • McIlreath IA, James NP (1984) Carbonate slopes. In: Walker (ed) Facies models, 2nd edn. Geoscience,Canada, pp 245–257

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • Martín-Algarra A (1987) Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética. PhD Thesis, Universidad de Granada, pp 1–1171

  • Martín-Martín M (1996). El Terciario del área de Sierra Espuña. PhD Thesys, Universidad Granada, 297 p

  • Martín-Martín M, Martín-Algarra A (1997) La estructura del área de Sierra Espuña (Contacto Zonas Internas-Externas, sector oriental de la Cordillera Bética). Estud Geol 53:237–248

    Article  Google Scholar 

  • Martín-Rojas I, Caracuel JE, Estévez A, Martín-Martín M, Sandoval J (2002) Jurassic stratigraphy of the Malaguide Complex from Sierra Espuña (Internal Betic Zone, SE Spain). In: STRATI 2002 – 3éme Congress Français de Stratigraphie. Documents STU Lyon 156:156–157

  • Martire L (1996) Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies, Erlangen 35:209–236

    Article  Google Scholar 

  • National Research Council (1979) Ad hoc panel to investigate the geological and geophysical research needs and problems of continental margins. Natural Academy Science, Washington DC, pp 1–302

  • Navarro A, Trigueros E (1963) Estudio Geológico del Borde Oriental de la Sierra Espuña. Notas y Comunicaciones Instituto Geológico y Minero de España 70:205–210

    Google Scholar 

  • Paquet J (1962) Contribution à l´étude géologique de la Sierra Espuña (Prov. de Murcia, Espagne). Ann Soc Géol Nord 32:9–17

    Google Scholar 

  • Paquet J (1969) Étude géologique de l´Ouest de la province de Murcia (Espagne). Mémoires du Bureau de Recherches Géologiques et Minières, Paris, 48, 111, pp 1–270

  • Peyre N, Peyre Y (1960) Observaciones Geológicas Sobre Sierra Espuña (Murcia). Notas y Comunicaciones Instituto Geológico y Minero de España 59:3–23

    Google Scholar 

  • Ramsay JG, Huber MI (1987) Modern structural geology. Academic, London, pp 1–700

    Google Scholar 

  • Read JF (1985) Carbonate facies models. Bull Am Assoc Pet Geol 69:1–12

    Google Scholar 

  • Ruiz-Ortiz PA, Bosence DWJ, Rey J, Nieto LM, Castro JM, Molina JM (2004) Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Res 16:235–257

    Article  Google Scholar 

  • Santantonio M (1993) Facies associations and evolution of pelagic carbonate platform/basin systems: examples from the Italian Jurassic. Sedimentology 40:1039–1067

    Article  Google Scholar 

  • Santantonio M (1994) Pelagic carbonate platforms in the geologic record: their classification, and sedimentary and paleotectonic evolution. Am Assoc Pet Geol 78:122–141

    Google Scholar 

  • Sanz de Galdeano C (1997) La Zona Interna Bético-Rifeña (Antecedentes, unidades tectónicas, correlaciones y bosquejo de reconstrucción Paleogeográfica). Monográfica Tierras del Sur, Universidad de Granada, pp 1–316

  • Sanz de Galdeano C, Martín-Martín M, Estévez A (2001) Unidades tectonicas y estructura del sector meridional de Sierra Espuña (Cordillera Bética, Murcia). Estud Geol 56(5–6):269–278

    Google Scholar 

  • Schlager W (1981) The paradox of drowned reefs and carbonate platforms. Bull Geol Soc Am 92:197–211

    Article  Google Scholar 

  • Seyfried H (1978) Der subbetische Jura von Murcia (Südost-Spanien). Geol Jahrb 29:3–201

    Google Scholar 

  • Vera JA (1988) Evolución de los sistemas de depósito en el Margen Ibérico de la Cordeillera Bética. Rev Soc Geol España 1(3–4):373–391

    Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental litosphere. Can J Earth Sci 22:108–125

    Article  Google Scholar 

  • Wilson JL (1975) Carbonate facies in geological history. Springer, Berlin Heidelberg New York, pp 1–517

    Google Scholar 

  • Winterer EL, Bosellini A (1981) Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. J Am Assoc Pet Geol 65:394–421

    Google Scholar 

  • Withjack MO, Peterson ET (1993) Prediction of normal-fault geometries—a sensitivity analysis. J Am Assoc Pet Geol 77:1860–1873

    Google Scholar 

  • Zempolich WG (1993) The drowning succession in Jurassic Carbonates of the Venetian Alps, Italy: a record of supercontinent breakup, gradual eustatic rise, and eutrophication of shallow-water environments. AAPG Memoir 57, Carbonate Sequence Stratigraphy, pp 63–105

Download references

Acknowledgements

This research was economically co-financed by the research projects BTE2001-3020, BTE2001-3029, BTE2003-01113 and CGL2005-03887 (Spanish Ministry of Education and Science) and Research Groups and project of the Generalitat Valenciana in the CTMA department (IGA) from the Alicante University, and Junta de Andalucía (RNM-178). We also thank constructive criticism and accurate reviews by Dr. Guerrera and Dr. Sanz de Galdeano. The English revision effectuated by Dr. David Nesbitt to the manuscript is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Martín-Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Martín, M., Martín-Rojas, I., Caracuel, J.E. et al. Tectonic framework and extensional pattern of the Malaguide Complex from Sierra Espuña (Internal Betic Zone) during Jurassic–Cretaceous: implications for the Westernmost Tethys geodynamic evolution. Int J Earth Sci (Geol Rundsch) 95, 815–826 (2006). https://doi.org/10.1007/s00531-005-0061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0061-7

Keywords

Navigation