International Journal of Earth Sciences

, Volume 95, Issue 3, pp 529–541 | Cite as

Kinematic link between episodic trapdoor collapse of the Negra Muerta Caldera and motion on the Olacapato-El Toro Fault Zone, southern central Andes

  • Juliane Ramelow
  • Ulrich Riller
  • Rolf L. Romer
  • Onno Oncken
Original Paper


A combined geochronological and structural analysis of the Miocene Negra Muerta Caldera was designed to better understand caldera formation associated with prominent faults on the central Andean plateau. Rb–Sr ages of the caldera outflow facies indicate that caldera formation occurred in two volcano-tectonic episodes. The first episode commenced with explosive eruption of the 9.0±0.1 Ma andesitic Acay Ignimbrite followed by a period of volcanic quiescence and moderate tectonic activity. Dominant volcanic and tectonic activity occurred during the second episode, which is bracketed by eruption of the 7.6±0.1 Ma rhyolitic Toba 1 Ignimbrite and effusive discharge of the 7.3±0.1 Ma rhyodacitic to andesitic lava flows. Structural relationships between rocks of the Negra Muerta Volcanic Complex and collapse-induced normal faults, notably NE-striking normal faults, agree with simultaneous volcanic activity and floor subsidence of the caldera during the second episode. Floor subsidence was achieved by tilting on an outward dipping reverse fault to the northwest of the caldera floor around a hinge zone located south of the caldera floor. This induced horizontal extension of the caldera floor and was accomplished by fragmentation of, and intrusion of dikes into, the floor. Collapse-induced and post-collapse fault populations of the caldera do not differ significantly in the directions of their axes of maximum extension and are in this respect kinematically compatible with left-lateral slip on the nearby Olacapato-El Toro Fault Zone. This furnishes evidence for a kinematic control by prominent faults on the formation of collapse calderas in the central Andes. The structural analysis of the Negra Muerta Caldera shows that collapse calderas can serve as deformation markers that contribute in elucidating the regional kinematic regime and the time of activity of prominent dislocations genetically related to collapse calderas.


Collaps caldera Geochronology Kinematics Deformation Central Andes 



This work was funded by the German Science Foundation (projects Ri 916/1-1, Ri 916/1-2 and subproject C1C of the collaborative research project SFB 267). We thank our colleagues at the Universidad Nacional de Salta, notably Ivan Petrinovic, Ricardo Alonso, José Viramonte and Fernando Hongn for scientific advice and logistical support. We acknowledge comments by O. Bellier and S. deSilva on an earlier version of the manuscript as well as a review for the Journal by an anonymous person.


  1. Acocella V, Salvini F, Funiciello R, Faccenna C (1999) The role of transfer structures on volcanic activity at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 91:123–139CrossRefGoogle Scholar
  2. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Ann Rev Earth Plan Sci 25:139–174CrossRefGoogle Scholar
  3. Allmendinger RW, Ramos VA, Jordan TE, Palma M, Isacks BL (1983) Paleogeography and Andean structural geometry, Northwest Argentina. Tectonics 2:1–16CrossRefGoogle Scholar
  4. Bellier O, Sébrier M (1994) Relationship between tectonism and volcanism along the Great Sumatran fault zone deduced by SPOT image analyses. Tectonophysics 233:215–231CrossRefGoogle Scholar
  5. Caffe PJ, Trumbull RB, Coira BL, Romer RL (2002) Petrogenesis of early Neogene magmatism in the northern Puna; implications for magma genesis and crustal processes in the central Andean plateau. J Petrol 43:907–942CrossRefGoogle Scholar
  6. Del Papa CE (1999) Sedimentation on a ramp type lake margin; paleocene–eocene Maiz-Gordo formation, northwestern Argentina. J South Am Earth Sci 12:389–400CrossRefGoogle Scholar
  7. de Silva S.L (1989) Altiplano-Puna volcanic complex of the central Andes. Geology 17:1102–1106CrossRefGoogle Scholar
  8. Gonzalez Bonorino G, Omarini R, Viramonte J (1999) Geologia del Noroeste Argentino. XIV. Congreso Geológico Argentino, Salta, Tomo I:391–392Google Scholar
  9. Isacks B (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231CrossRefGoogle Scholar
  10. Llambias EJ, Sato AM, Tomsic S (1985) Geologia y caracteristicas quimicas del stock terciario del Nevado de Arcay y vulcanitas asociadas, Provincia de Salta. Asociación Geológica Argentina 40(3–4):158–175Google Scholar
  11. Lindsay JM, de Silva S, Trumbull R, Emmermann R, Wemmer K (1999) La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. J Volcanol Geotherm Res 106:145–173CrossRefGoogle Scholar
  12. Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218CrossRefGoogle Scholar
  13. Wernicke B, Burchfiel BC (1982) Modes of extensional tectonics. J Struct Geol 4:105–115CrossRefGoogle Scholar
  14. Marrett RA, Allmendinger RW, Alonso RN, Drake RE (1994) Late Cenozoic tectonic evolution of the Puna Plateau and adjacent foreland, northwestern Argentine Andes. J South Am Earth Sci 7:179–207CrossRefGoogle Scholar
  15. Moore ID, Kokelaar P (1997) Tectonic influences in piecemeal caldera collapse at Glencoe Volcano, Scotland. J Geol Soc Lond 154(5):765–768CrossRefGoogle Scholar
  16. Moore I, Kokelaar P (1998) Tectonically controlled piecemeal caldera collapse: a case study of Glencoe volcano, Scotland. Geol Soc Am Bull 110(11):1448–1466CrossRefGoogle Scholar
  17. Moreno JA (1970) Estratigrafía y paleogeografía del Cretácico superior en la cuenca del noroeste argentino, con especial mención de los Subgrupos Balbuena y Santa Bárbara. Asociación Geológica Argentina 25(1):9–44Google Scholar
  18. Petrinovic IA, Mitjavila J, Viramonte JG, Marti J, Becchio R, Arnosio JM, Colombo F (1999) Descripción geoquímica y geochronológica de secuencias volcánicas neógenas de Trasarco, en el extremo oriental de la Cadena Volcánica Transversal del Quevar (Noroeste de Argentina). In: Colombo F, Queralt I, Petrinovic I (eds) Geológia de los Andes Centrales Meridionales: El noroeste Argentino. Acta Geológica Hispánica 34:255–272Google Scholar
  19. Petrinovic IA, Riller U, Brod JA (2005) The Negra Muerta Volcanic Complex, southern central Andes: geochemical characteristics and magmatic evolution of an episodically active volcanic centre. J Volcanol Geotherm Res 140:295–320CrossRefGoogle Scholar
  20. Reyes FC, Salfity JA (1973) Cosideraciones sobre la estratigrafía del Cretácico (Subgrupo Pirgua) del noroeste Argentino. V. Congreso Geológico Argentino, Actas III:355–385Google Scholar
  21. Richards JP, Villeneuve M (2002) Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina. J Volcanol Geotherm Res 116:161–200CrossRefGoogle Scholar
  22. Riller U, Oncken O (2003) Growth of the Central Andean plateau by tectonic segmentation is controlled by the gradient in crustal shortening. J Geol 111:367–384CrossRefGoogle Scholar
  23. Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Plant Sci Lett 188:299–311CrossRefGoogle Scholar
  24. Riller U, Greskowiak J, Ramelow J, Strecker M (1999) Dominant modes of Andean deformation in the Calchaquí River Valley, NW-Argentina, XIV. Congreso Geológico Argentino, Actas I:201–204Google Scholar
  25. Salfity JA., Marquillas, RA (1994) Tectonic and sedimentary evolution of the cretaceous-Eocene Salta Group Basin, Argentina. In: Salfity JA (ed) Cretaceous Tectonics of the Andes, Earth Evolution Sciences, pp 266–315Google Scholar
  26. Schurr B, Asch G, Rietbrock A, Kind R, Pardo M, Heit B, Monfret T (1999) Seismic and average velocities beneath the Argentine Puna Plateau. Geophys Res Lett 26:3025–3028CrossRefGoogle Scholar
  27. Servicio Geológico Minero Argentina (1996) Hoja Geologica 2566-I (scale 1: 250.000), San Antonio de Los Cobres, Provincias de Jujuy y Salta, Republica Argentina. Boletin 217:126Google Scholar
  28. Turner FJ (1953) Nature and dynamic interpretation of deformation lamellae in calcite and three marbles. Am J Sci 251:276–298Google Scholar
  29. Turner JCM (1959) Estratigrafía del cordón de Escaya y de la Sierra de la Rinconada, Jujuy. Asociacion Geológica Argentina 15:16–39Google Scholar
  30. Ventura G (1994) Tectonics, structural evolution and caldera formation on Volcano Island (Aeolian Archipelago, southern Thyrrhenian Sea). J Volcanol Geotherm Res 60:207–224CrossRefGoogle Scholar
  31. Vilela CR (1951) Acerca del hallazgo del horizonte calcáreo dolomítico en la Puna Salto-jujeña y su significado geológico. Asociacion Geológica Argentina 6(2):101–107Google Scholar
  32. Viramonte JG, Omarini RH, Araña Saavedra V, Aparicio A, García Cacho L, Parica P (1984) Edad, genesis y mecanismos de erupcion de las riolitas granatiferas de San Antonio de los Cobres, Provincia de Salta, IX. Congreso Geológico Argentino. Actas III:216–233Google Scholar
  33. Viramonte JG, Petrinovic IA (1990) Cryptic and partially buried calderas along a strike- slip fault system in the Central Andes. Int Symp on Andean Geodynamics, Grenoble. Actas I:318–320Google Scholar
  34. Walker GPL (1984) Downsag calderas, ring faults, caldera sizes and incremental caldera growth. J Geophys Res 89:8407–8416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Juliane Ramelow
    • 1
  • Ulrich Riller
    • 1
    • 2
  • Rolf L. Romer
    • 1
  • Onno Oncken
    • 1
  1. 1.GeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Museum für Naturkunde, Institut für MineralogieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations