Skip to main content

Advertisement

Log in

The post-glacial landscape evolution of the North German Basin: morphology, neotectonics and crustal deformation

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The recent evolution of the north German Basin (NGB), which is presently a low-seismic area, was partly affected by glacial loading and unloading of the ice masses. Major stresses acting within the NGB are induced by the North-Atlantic ridge push, the ongoing Alpine collision, and the post-glacial rebound of Fennoscandia. Present-day horizontal stresses within the NGB are directed generally NW–SE, but fan and bend north of 52°N towards NNE. Major basement faults are directed NW–SE, minor faults NE–SW and NNE–SSW, and are clearly detectable in geomorphological and satellite lineaments. Furthermore, the drainage pattern and the distribution of lakes in northern Germany follow exactly block boundaries and, hence, mark zones of present-day subsidence. The understanding of the post-glacial morphology and reactivation of faults requires a view into the very heterogeneous crust and upper mantle below the NGB. The re-adjustment of the individual fault blocks during post-glacial relaxation of the lithosphere leads to differential, crust-dependent uplift and, probably, to the formation of Urstrom valleys. The Urstrom valleys and terminal moraines in northern Germany appear to parallel the major tectonic lineaments and lithospheric “block” boundaries. The lithospheric memory is expressed in the post-glacial landscape evolution of the NGB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramowitz T, Thybo H, MONA LISA Working Group (1998) Seismic structure across the Caledonian Deformation Front along MONA LISA profile 1 in the southeastern North Sea. Tectonophysics 288:153–176

    Google Scholar 

  • Ahrens H, Lotsch D, Schwab G (1982) Präglaziale tektonische Aktivierung im Nordteil der DDR. Z geol Wissen 10:671–678

    Google Scholar 

  • Aichroth B, Prodehl C, Thybo H (1992) Crustal structure along the central segment of the EGT from seismic-refraction studies. Tectonophysics 207:43–64

    Article  Google Scholar 

  • Aizberg RY, Garetsky R (2001) Depth of Mohorovicic discontinuity (map 7). Brandenburgische Geowiss Beitr 8(1):39–41

    Google Scholar 

  • Arvidsson R (1996) Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science 274:744–746

    Article  Google Scholar 

  • Ask MVS (1997) In situ stress from breakouts in the Danish Sector of the North Sea. Mar Petrol Geol 14:231–243

    Article  Google Scholar 

  • BABEL Working Group (1993) Deep seismic reflection/refraction interpretation of crustal structure along BABEL profiles A and B in the southern Baltic Sea. Geophys J Int 122:352–343

    Google Scholar 

  • Babuska V, Plomerova J (2004) The Sorgenfrei–Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy. Terra Nova 16:243–249

    Article  Google Scholar 

  • Baldschuhn R, Best G, Deneke E, Frisch U, Jürgens U, Kockel F, Schmitz J, Sattler-Kosinowski S, Stancu-Kristoff G, Zirngast M (1996) Geotektonischer Atlas von NW-Deutschland (Geotectonic Atlas of NW-Germany). 1:300000, BGR, 17 Karten, 140 Schnitte, Hannover

  • Baltrusch S, Klarner S (1993) Rotliegend-Gräben in NE-Brandenburg. Z dt geol Ges 144:173–186

    Google Scholar 

  • Bayer U, Scheck M, Rabbel W, Krawczyk CM, Götze HJ, Stiller M, Beilecke Th, Marotta AM, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE-German Basin. Tectonophysics 314:285–307

    Article  Google Scholar 

  • Behre KE (2003) Eine neue Meeresspiegelkurve für die südliche Nordsee. Probleme Küstenforsch südl Nordseegebiet 28:9–63

    Google Scholar 

  • Bennett MR, Glasser NF (1996) Glacial geology ice sheets and landforms. Wiley, New York, p 364

    Google Scholar 

  • Cloetingh S, Ziegler PA, Beekman F, Andriessen PAM, Matenco L, Bada G, Garcia-Castellanos D, Hardebol N, Dezes P, Sokoutis D (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat Sci Rev 24:241–304

    Article  Google Scholar 

  • DEKORP-BASIN Research Group (1999) The deep crustal structure of the Northeast German basin: new DEKORP-BASIN’96 deep-profiling results. Geology 27:55–58

    Article  Google Scholar 

  • Dulce J-C (1983) Zur Anwendungsmöglichkeit linearanalytischer Fernerkundungsmethoden im Verbreitungsgebiet quartärer Ablagerungen am Beispiel Schleswig-Holsteins. (The applicability of lineament analysis by remote sensing in the quaternary sediments of Schleswig-Holstein, W-Germany). Meyniana 35:1–41

    Google Scholar 

  • Ellenberg J (1992) Recent fault tectonics and their relationship to the seismicity of East Germany. Tectonophysics 202:117–121

    Article  Google Scholar 

  • Elverhøi A, Fjeldskaar W, Solheim A, Nyland-Berg M, Russwurm L (1993) The Barents Sea Ice Sheet—a model of its growth and decay during the last ice maximum. Quat Sci Rev 12:863–873

    Article  Google Scholar 

  • EUGENO-S Working Group (1988) Crustal structure and tectonic evolution of the transition between the Baltic Shield and North German Caledonides (the EUGENO-S project). Tectonophysics 150:253–348

    Article  Google Scholar 

  • Fjeldskaar W, Cathles L (1991) The present rate of uplift of Fennoscandia implies a low-viscosity asthenosphere. Terra Nova 3:393–400

    Article  Google Scholar 

  • Franke D, Hoffmann N (1999) Das Elbe-Lineament–bedeutende Geofraktur oder Phantomgebilde? Teil 1: Die Referenzgebiete. Z geol Wiss 27:279–314

    Google Scholar 

  • Frischbutter A (2001) Recent vertical movements (map 4). Brandenburgische Geowiss Beitr 8(1):27–31

    Google Scholar 

  • Garetsky R, Aizberg RY, et al (2001) The neogeodynamic state of the Baltic Sea depression and adjacent areas—some conclusions from the IGCP-Project 346: “Neogeodynamica Baltica”. Brandenburgische Geowiss Beitr 8(1):43–47

    Google Scholar 

  • Goes S, Loohuis JJP, Wortel MJR, Govers R (2000) The effect of plate stresses and shallow mantle temperature on tectonics of northwestern Europe. Global Planet Change 27:23–38

    Article  Google Scholar 

  • Gölke M, Coblentz D (1996) Origins of the European regional stress field. Tectonophysics 266:11–24

    Article  Google Scholar 

  • Gossler J, Kind R, Sobolev SV, Kämpf H, Wylegalla K, Stiller M and TOR Working Group (1999) Major crustal features from the Harz Mountains to the Baltic Shield derived from receiver functions. Tectonophysics 314:321–333

    Article  Google Scholar 

  • Gregersen S (1992) Crustal stress regime in Fennoscandia from focal mechanisms. J Geophs Res 97 (B8):11821–11827

    Article  Google Scholar 

  • Gregersen S, Lykke-Andersen H, et al (1995) Recent crustal movements and earthquakes in the area of the Tornquist zone. Studia Geophysica Geodaetica 39:257–261

    Article  Google Scholar 

  • Grünthal G, Meier R (1995) Das "Prignitz"-Erdbeben von 1409. Brandenburgische Geowissenschaftliche Beiträge 2(2):5–27

    Google Scholar 

  • Grünthal G, Stromeyer D (1992) The Recent Crustal Stress Field in Central Europe: Trajectories and Finite Element Modeling. J Geophys Res 97(B8):11805–11820

    Article  Google Scholar 

  • Grünthal G, Stromeyer D (1994) The recent crustal stress field in Central Europe sensu lato and its quantitative modelling. Geol Mijnbouw 73:173–180

    Google Scholar 

  • Grünthal G, Stromeyer D (2001) Direction of recent maximal stress and epicenter map of tectonic earthquakes, (maps 5 and 6). Brandenburgische Geowiss Beitr 8(1):33–37

    Google Scholar 

  • Guterch A, Grad M, Thybo H, Keller GR, POLONAIS’97 Working Group (1999) POLONAISE’97–an international seismic experiment between Precambrian and Variscan Europe in Poland. Tectonophysics 314:101–121

    Article  Google Scholar 

  • Henderson JR (1991) An estimate of the stress tensor in Sweden using the earthquake fault-plane solution. Tectonophysics 192:213–244

    Article  Google Scholar 

  • Hennig D (1906) Erdbebenkunde. Johann Ambrosius Barth, Leipzig, p 174

    Google Scholar 

  • Hossein Shomali Z, Roberts RG, TOR Working Group (2002) Non-linear body wave teleseismic tomography along the TOR array. Geophys J Int 148:562–574

    Article  Google Scholar 

  • Houtgast RF, van Balen RT (2000) Neotectonics of the Roer Valley Rift System, the Netherlands. Global Planet Change 27:131–146

    Article  Google Scholar 

  • Ihde J, Steinberg J, Ellenberg J, Bankwitz E (1987) On recent vertical crustal movements derived from relevellings within the territory of the G.D.R. Gerlands Beitr Geophysik 96(3/4):206–217

    Google Scholar 

  • Johnston AC (1987) Suppression of earthquakes by large continental ice sheets. Nature 330:467–469

    Article  Google Scholar 

  • Johnston P, Wu P, Lambeck K (1998) Dependance of horizontal stress magnitude on load dimension in glacial rebound models. Geophys J Int 139:41–60

    Article  Google Scholar 

  • Juschus O (2001) Das Jungmoränenland südlich von Berlin—Untersuchungen zur jungquartären Landschaftsentwicklung zwischen Unterspreewald und Nuthe. Unpublished PhD Thesis Humboldt-University Berlin

  • Kaiser A, Reicherter K, Hübscher C, Gajewski D (2005) Variation of the present-day stress field within the North German Basin—insights from thin shell FE-modelling. Tectonophysics 397:55–72

    Article  Google Scholar 

  • Kooi H, Johnston P, Lambeck K, Smither C, Molendijk R (1998) Geological causes of recent (~100 yr) vertical land movement in the Netherlands. Tectonophysics 299:297–316

    Article  Google Scholar 

  • Korjenkov AM, Kaiser D (2003) Historical-macroseismic study of the town church in Wittstock, Northern Gemany. In: Proceedings of the 11th FIG symposium on deformation measurements, Santorini, Greece, p 8

  • Krawczyk CM, Eilts F, Lassen A, Thybo H (2002) Seismic evidence of Caledonian deformed crust and uppermost mantle structures in the northern part of the Trans-European Suture Zone, SW Baltic Sea. Tectonophysics 360:215–244

    Article  Google Scholar 

  • Krull P, Schmidt D (1990) Geologische Karte der Deutschen Demokratischen Republik: Karte der Fotolineationen Kosmischer Aufnahmen Zentrales Geologisches Institut

  • Krzywiec P, Kramarska R, Zientara P (2003) Strike-slip tectonics within the SW Baltic Sea and its relationship to the inversion of the Mid-Polish Trough—evidence from high resolution seismic data. Tectonophysics 373:93–105

    Article  Google Scholar 

  • Kurzawa M (2003) The sedimentary record and rates of quaternary vertical tectonic movements in NW Poland. Quat Int 101–102:137–148

    Article  Google Scholar 

  • Lambeck K, Johnston P, Nakada M (1990) Holocene glacial rebound and sea level changes in NW Europe. Geophys J Int 115:960–990

    Article  Google Scholar 

  • Leydecker G (1986) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 1000–1981. Geol Jb Reihe E 36:3–8

    Google Scholar 

  • Leydecker G, Steinwachs M, Seidl D, Kind R, Klussmann J, Zerna W (1980) Das Erdbeben vom 2.Juni 1977 in der norddeutschen Tiefebene bei Soltau. Geol Jb Reihe E 18:3–18

    Google Scholar 

  • Leydecker G, Kopera JR, Rudloff A (1999) Abschätzung der Erdbebengefährdung in Gebieten geringer Seismizität am Beispiel eines Standortes in Norddeutschland. In: Savidis SA (ed) Entwicklungsstand in Forschung und Praxis auf den Gebieten des Erdbebeningenieurwesens, der Boden- und Baudynamik. DGEB—Publikation 10:89–97, Berlin

  • Ludwig AO (2001a) Vertical movements since the beginnig of Rupelian stage, (map 1). Brandenburgische Geowiss Beitr 8(1):5–12

    Google Scholar 

  • Ludwig AO (2001b) Recent position of surfaces of Holsteinian interglacial marine and limnic sediments, and of Saalian glacial river terraces, Explanatory notes to map 3. Brandenburgische Geowiss Beitr 8(1):21–25

    Google Scholar 

  • Lykke-Andersen H (1981) Indications of neotectonic features in Denmark. Z Geomorph N F 40:43–54

    Google Scholar 

  • Lykke-Andersen H, Borre K (2000) Aktiv tektonik i Danmark-der er liv i Sorgenfrei-Tornquist Zonen Geologisk Nyt 6:12–13

    Google Scholar 

  • Lykke-Andersen H, Madirazza I, et al (1996) Tektonik og landskabsdannelse i Midtjylland. Geologisk Tidsskrift 3:1–32

    Google Scholar 

  • Maddy D (1997) Uplift-driven valley incision and river-terrace formation in southern England. J Quat Sci 12:539–545

    Article  Google Scholar 

  • Marotta AM, Bayer U, Scheck M, Thybo H (2001) The stress field below the NE German Basin: effects induced by the Alpine collision. Geophys J Int 144:F8-F12

    Article  Google Scholar 

  • Marotta AM, Mitrovica JX, Sabadini R, Milne G (2004) Combined effects of tectonics and glacial isostatic adjustment on intraplate deformation in central and northern Europe: applications to geodetic baseline analyses. J Geophys Res 109:B01413

    Article  Google Scholar 

  • McCann T (1999) The tectono-sedimentary evolution of the northern margin of the Carboniferous foreland basin of NE-Germany. Tectonophysics 313:119–144

    Article  Google Scholar 

  • Meier D (2004) Man and environment in the marsh area of Schleswig-Holstein from Roman until late Medieval times. Quat Int 112:55–69

    Article  Google Scholar 

  • Meier R, Franzke HJ (1995) Das Erdbeben “Prignitz 1409” im Lichte der tektonischen Analyse des Ruptursystems in der Pfarrkirche zu Wittstock. Brandenb Geowiss Beitr 2:33–46

    Google Scholar 

  • Meissner R, Krawczyk CM (1999) Caledonian and Proterozoic terrane accretion in the southwest Baltic Sea. Tectonophysics 314:255–267

    Article  Google Scholar 

  • Mörner NA (1973) Eustatic changes during the last 300 years. Palaogeo Palaeoclim Palaeoecol 13:1–14

    Article  Google Scholar 

  • Mörner NA (1979) The Fennoscandian uplift and Late Cenozoic geodynamics: geological evidence. Geo J 3:287–318

    Google Scholar 

  • Mörner NA (1991) Intense earthquakes and seismotectonics as a function of glacial isostasy. Tectonophysics 188:407–410

    Article  Google Scholar 

  • Mörner NA (1996) Liquefaction and varve disturbance as evidence of paleoseismic events and tsunamis; the autumn 10,430 BP event in Sweden. Quat Sci Rev 15:939–948

    Article  Google Scholar 

  • Mörner NA (2003) Paleoseismicity of Sweden - A Novel Paradigm. ISBN-91-631-4072-1. A contribution to INQUA from sub-commission on Paleoseismology. University of Stockholm, p 320

  • Mörner NA (2004) Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects. Tectonophysics 380:139–157

    Article  Google Scholar 

  • Muir-Wood R (2000) Deglaciation Seismotectonics: a principal influence on intraplate seismogenesis at high latitudes? Quat Sci Rev 19: 1399–1411

    Article  Google Scholar 

  • Müller B, Zoback ML, Fuchs K, Mastin L, Gregersen S, Pavoni N, Stephansson O, Ljunggren C (1992) Regional pattern of tectonic stress in Europe. J Geophs Res 97(B8):11783–11804

    Article  Google Scholar 

  • NIA–Netherlands Institute of Applied Geoscience TNO (2000) Northwestern European Gas Atlas, published on CD-Rom, Utrecht

  • Novak B (2002) Early Holocene brackish and marine facies in the Fehmarn Belt, southwest Baltic Sea: depositional processes revealed by high-resolution seismics and core analysis. Mar Geol 189:307–321

    Article  Google Scholar 

  • Novak B, Björck S (2002) Late Pleistocene-early Holocene fluvial facies and depositional processes in the Fehmarn Belt, between Germany and Denmark, revealed by high-resolution seismic and lithofacies analysis. Sedimentology 49:451–465

    Article  Google Scholar 

  • Peltier WR (1994) Ice Age Paleotopography. Science 265:195–201

    Article  Google Scholar 

  • Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344

    Article  Google Scholar 

  • Piotrowski JA, Tulaczyk S (1999) Subglacial conditions under the last ice sheet in northwest Germany: ice-bed separation and enhanced basal sliding Germany? Quat Sci Rev 18:737–751

    Article  Google Scholar 

  • Reinecker J, Heidbach O, Müller B (2004) The 2004 release of the World Stress Map (available online http://www.world-stress-map.org)

  • Roeckel T, Lempp C (2003) Der Spannungszustand im norddeutschen Becken. Erdöl Erdgas Kohle, 119–112:73–80

    Google Scholar 

  • Roth F, Fleckenstein P (2001) Stress orientations found in north-east Germany differ from the West European trend. Terra Nova 13:289–296

    Article  Google Scholar 

  • Roth F, Fleckenstein P, Palmer J, Groß U (1999) Stress orientations found in NE-Germany differ from the West-European trend. Abh ICDP/KTN-Kolloquium, Bochum, pp 255–264

    Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin–inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  • Scherneck HG, Johansson JM, Mitrovica JX, Davis JL (1998) The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPO network. Tectonophysics 294:305–321

    Article  Google Scholar 

  • Schwarzer K, Diesing M, Larson M, Niedermeyer RO, Schumacher W, Furmanczyk K (2003) Coastline evolution at different time scales—examples from the Pomerian Bight, southern Baltic Sea. Mar Geol 194:79–101

    Article  Google Scholar 

  • Sirocko F (1998) Die Entwicklung der nordostdeutschen Ströme unter dem Einfluß jüngster tektonischer Bewegungen. Brandenburgische Geowiss Beitr 5(1):75–80

    Google Scholar 

  • Stackebrandt W (2004) Zur Neotektonik in Norddeutschland. Zeitschrift Geol Wissenschaften 32(2–4):85–96

    Google Scholar 

  • Stackebrandt W, Ludwig AO et al (2001) Base of Quaternary deposits of the Baltic Sea depression and adjacent areas (map 2). Brandenburgische Geowiss Beitr 8(1):13–19

    Google Scholar 

  • Stewart IS, Sauber J, Rose J (2000) Glacio-seismotectonics: ice sheets, crustal deformation and seismicity. Quat Sci Rev 19:1367–1389

    Article  Google Scholar 

  • Thorson RM (2000) Glacial tectonics: a deeper perspective. Quat Sci Rev 19:1391–1398

    Article  Google Scholar 

  • Thybo H (1990) A seismic velocity model along the EGT profile—from the North German Basin into the Baltic shield. In: Freeman R, Giese P, Mueller St (eds) The European Geotraverse. Integrative Studies. European Science Foundation, Strasbourg, pp 99–108

    Google Scholar 

  • Trötfen PE, Mörner NA (1997) Varved clay chronology as a means of recording palaeoseismic events in southern Sweden. J Geodyn 24:249–258

    Article  Google Scholar 

  • Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkieicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petr Geol 17:43–59

    Article  Google Scholar 

  • Wahlstrom R (1989) Seismodynamics and postglacial faulting in the Baltic Shield. In: Gregersen S, Basham PW (eds) Earthquakes at the North Atlantic Passive margins: neotectonics and Postglacial Rebound. Kluwer, Dordrecht, pp 467–482

    Google Scholar 

  • Walcott RI (1970) Isostatic response to loading of the crust in Canada. Can J Earth Sci 7:716–729

    Article  Google Scholar 

  • Westaway R, Maddy D, Bridgland D (2002) Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames terrace record. Quat Sci Rev 21:559–603

    Article  Google Scholar 

  • Woldstedt P (1956) Die Geschichte des Flußnetzes in Norddeutschland und angrenzende Gebiete. Eiszeitalter Gegenwart 7:5–12

    Google Scholar 

  • Wu P, Johnston P, Lambeck K (1999) Postglacial rebound and fault instability in Fennoscandia. Geophys J Int 139:657–670

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij. Elsevier, Amsterdam, p 239

Download references

Acknowledgements

This is publication GEOTECH-174 in the frame of the “Geotechnologien” and SPP 1135. Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged (project Re 1361/4). Constructive reviews by H.-J. Franzke (Clausthal-Zellerfeld) and N.-A. Mörner (Stockholm) are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Reicherter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reicherter, K., Kaiser, A. & Stackebrandt, W. The post-glacial landscape evolution of the North German Basin: morphology, neotectonics and crustal deformation. Int J Earth Sci (Geol Rundsch) 94, 1083–1093 (2005). https://doi.org/10.1007/s00531-005-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0007-0

Keywords

Navigation