Skip to main content
Log in

Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif

  • Original paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called “palite”), zircons were dated by the U–Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327–342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amelin YV, Heaman LM, Semenov VS (1995) U–Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Proterozoic continental rifting. Precambrian Res 75:31–46

    Article  CAS  Google Scholar 

  • Anczkiewicz R, Oberli F, Burg JP, Villa IM, Günther D, Meier M (2001) Timing of normal faulting along the Indus suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon. Earth Planet Sci Lett 191:101–114

    Article  CAS  Google Scholar 

  • Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116

    Article  CAS  Google Scholar 

  • Chen F, Siebel W, Satir M (2002a) Zircon U–Pb and Pb-isotope fractionation during stepwise HF-acid leaching and chronological implications. Chem Geol 191:155–164

    Article  CAS  Google Scholar 

  • Chen F, Siebel W, Satir M (2002b) Zircon geochronology and geochemistry of the Fürstenstein pluton, Bavarian Forest. Eur J Miner Bh 14(1):33

    Google Scholar 

  • Chen F, Siebel W, Satir M, Terzioğlu MN, Saka K (2002c) Zircon geochronology and Nd–Sr isotope systematic in the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int J Earth Sci 45:431–456

    Google Scholar 

  • Cherniak D, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Cherniak D, Lanford W, Ryerson F (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim Cosmochim Acta 55:1663–1673

    Article  CAS  Google Scholar 

  • Christinas P, Köhler H, Müller-Sohnius D (1991) Altersstellung und Genese der Palite des Vorderen Bayerischen Waldes (Nordostbayern). Geol Bavarica 96:87–107

    Google Scholar 

  • Cocherie A, Guerrot C, Rossi PH (1992) Single-zircon dating by step-wise Pb evaporation: comparison with other geochronological techniques applied to the Hercynian granites of Corsica, France. Chem Geol 101:131–141

    Article  CAS  Google Scholar 

  • Crowley JL (1999) U–Pb geochronologic constraints on Paleoproterozoic tectonism in the Monashee complex, Canadian Cordillera: elucidating an overprinted geologic history. Geol Soc Am Bull 111:560–577

    Article  CAS  Google Scholar 

  • Dvorak J (1985) Horizontal movements on deep faults in the Proterozoic basement of Moravia. Jahrb Geol Bundesanstalt Österreich 127:551–556

    Google Scholar 

  • Fischer G (1938) Der Bayerische und der Böhmer Wald. Die Entwicklung seiner Landschaft im Laufe der geologischen Geschichte. Jahrb Preuß Geol Landesanstalt 59:355–382

    Google Scholar 

  • Fischer G (1959) Der Bau des Vorderen Bayerischen Waldes. Jber Mitt Oberrh Geol Ver NF 41:1–22

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Spec Publ Geol Soc Lond 179:35–61

    Google Scholar 

  • Frentzel A (1911) Das Passauer Granitmassiv. Geognostisches Jahrb 24:31

    Google Scholar 

  • Friedl G, von Quadt A, Finger F (1993) 340 Ma U/Pb-Monazitalter aus dem niederösterreichischen Moldanubikum und ihre geologische Bedeutung. Terra Nostra 3/94:43–46

    Google Scholar 

  • Friedl G, von Quadt A, Ochsner A, Finger F (1994) Timing of the Variscan orogeny in the Southern Bohemian Massif (NE-Austria) deduced from new U–Pb zircon and monazite dating. Terra abstr 5:235–236

    Google Scholar 

  • Gebauer D, Friedl G (1994) A 1.38 Ga protolith age for the Dobra orthogneiss (Moldanubian zone of the southern Bohemian Massif, NE Austria): evidence from ion-microprobe (SHRIMP) dating of zircon. J Czech Geol Soc 39:34–35

    Google Scholar 

  • Gorz H (1974) Microprobe studies of inclusions in zircons and compilation of minor and trace elements in zircons from the literature. Chem Erde 33:326–357

    Google Scholar 

  • Grauert B, Hänny R, Soptrajanova G (1974) Geochronology of a polymetamorphic anatectic gneiss region: the Moldanubicum of the area Lam-Deggendorf, eastern Bavaria, Germany. Contrib Mineral Petrol 45:37–63

    CAS  Google Scholar 

  • Gümbel CW (1868) Geognostische Beschreibung des Königreiches Bayern. II. Abt. Ostbayerisches Grundgebirge, p 968 (Perthes)

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodo-luminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  CAS  Google Scholar 

  • Hegemann F (1936) Über die Bildungsweise des Quarzes im Bayerischen Pfahl. Chem Erde 10:521–538

    Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    Article  CAS  Google Scholar 

  • Hofmann R (1962) Die Tektonik des Bayerischen Pfahls. Geol Rundsch 52:332–346

    Google Scholar 

  • Holl KP, von Drach V, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb–Sr and Sm–Nd isotope variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194

    Article  CAS  Google Scholar 

  • Horn P, Köhler H, Müller-Sohnius D (1986) Rb–Sr Isotopengeochemie hydrothermaler Quarze des Bayerischen Pfahls und eines Flußspat-Schwerspat-Ganges von Nabburg-Wölsendorf/ Bundesrepublik Deutschland. Chem Geol 58:259–272

    Article  CAS  Google Scholar 

  • Janoušek V, Gerdes A (2003) Timing the magmatic activity within the Central Bohemian Pluton, Czech Republic: conventional U–Pb ages for the Sázava and Tábor intrusions and their geotectonic significance. J Czech Geol Soc 48(1–2):70–71

    Google Scholar 

  • Kalt A, Corfu F, Wijbrans JR (2000) Time calibration of a P-T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerische Wald, Germany), and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163

    Article  CAS  Google Scholar 

  • Kamo SL, Krogh TE, Kamarapeli PS (1995) Age of the Grenville dyke swarm, Ontario-Quebec: implications for the timing of Lapetan rifting. Can J Earth Sci 32:273–280

    Google Scholar 

  • Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U–Pb zircon ages, with an excample of an application to a study of zircons from the Saxonian granulite complex, Germany. In: Pagel M, Barbin V, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin Heidelberg New York, pp 415–455

    Google Scholar 

  • Klötzli US (1999) Th/U zonation in zircon derived from evaporation analysis: a model and its implications. Chem Geol 158:325–333

    Article  Google Scholar 

  • Klötzli US, Parrish RR (1996) Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineral Petrol 58:197–214

    Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb age investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:481–490

    Article  Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectromerty, and implications to zirconology. Contrib Mineral Petrol 96:63–71

    CAS  Google Scholar 

  • Köhler H, Propach G, Troll G (1989) Exkursion zur Geologie, Petrographie und Geochronologie des NE-bayerischen Grundgebirges. Ber Deutsch Mineral Ges 1(2):1–84

    Google Scholar 

  • Košler J, Kelley SP, Vrána S (2001) 40Ar/39Ar hornblende dating of a microgranodiorite dyke: implications for early Permian extension in the Moldanubian zone of the Bohemian Massif. Int J Earth Sci 90:379–385

    Article  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using the air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Article  CAS  Google Scholar 

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian fold belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    CAS  Google Scholar 

  • Ludwig KR (1988) PBdat for MS-Dos - a computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data. US Geol Surv, Open-file Report 88-542

  • Ludwig KR (2003) Isoplot 3.00—a geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication No. 4

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Mattern F (1995) Late Carboniferous to Lower Triassic shear sense reversals at strike-slip faults in eastern Bavaria. Zentralbl Geol Paläont Teil I 1993:1471–1490

    Google Scholar 

  • Mattern F (2001) Permo-Silesian movements between Baltica and western Europe: tectonics and ’basin families’. Terra Nova 13:368–375

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  CAS  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520

    Article  CAS  Google Scholar 

  • Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Metamorphic Geol 15:127–140

    Article  CAS  Google Scholar 

  • Michael PJ (1984) Chemical differentiation of the Cordillera Paine granite (southern Chile) by in situ fractional crystallization. Contrib Mineral Petrol 87:179–195

    CAS  Google Scholar 

  • Mielke H, Rohrmüller J, Gebauer D (1996) Ein metalateritisches Denudations-Niveau als lithologisch und zeitlich korrelierbarer Bezugshorizont in Phylliten, Glimmerschiefern und Gneisen des ostbayerischen Grundgebirges. Geol Bavarica 101:139–166

    Google Scholar 

  • Miller CF, Mittlefehldt (1982) Depletion of light rare-earth elements in felsic magmas. Geology 10:129–133

    CAS  Google Scholar 

  • Mulch A, Rosenau M, Dörr W, Handy MR (2002) The age and structure of dikes along the tectonic contact of the Ivrea-Verbano and Strona-Ceneri zones (southern Alps, Northern Italy, Switzerland). Schweiz Mineral Petrogr Mitt 82:55–76

    Google Scholar 

  • Nagasawa H, Schnetzler CC (1971) Partitioning of rare earth, alkali and alkaline earth elements between phenocrysts and acidic igneous magmas. Geochim Cosmochim Acta 35:953–968

    Article  CAS  Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume AM (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  CAS  Google Scholar 

  • Ochotzky H, Sandkühler B (1914) Zur Frage der Entstehung des Bayerischen Pfahles im Bayerischen Walde. Centralbl Mineral Geol Paläontol 1914:190

    Google Scholar 

  • Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorphic Geol 15:203–222

    Article  CAS  Google Scholar 

  • Peucker-Ehrenbrink B, Behr HJ (1993) Chemistry of hydrothermal quartz in the post-Variscan “Bavarian Pfahl” system, F.R. Germany. Chem Geol 103:85–102

    Article  CAS  Google Scholar 

  • Pidgeon RT, O’Neil JR, Silver LT (1966) Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions. Science 154:1538–1540

    CAS  Google Scholar 

  • Propach G, Baumann A, Schulz-Schmalschläger M, Grauert B (2000) Zircon and monazite U-Pb ages of Variscan granitoid rocks and gneisss in the Moldanubian zone of eastern Bavaria, Germany. Neues Jahrb Geol Paläontol Monatsh 2000(6):345–377

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  CAS  Google Scholar 

  • Rubatto D, Gebauer (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the western Alps. In: Pagel M, Barbin V, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin Heidelberg New York, pp 373–400

    Google Scholar 

  • Schneider DA, Edwards MA, Zeitler PK, Coath CD (1999) Mazeno Pass pluton and Jutial pluton, Pakistan Himalaya: age and implications for entrapment mechanisms of two granites in the Himalaya. Contrib Mineral Petrol 136:273–284

    Article  CAS  Google Scholar 

  • Siebel W (1995) Anticorrelated Rb–Sr and K–Ar age discordances, Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120:197–211

    CAS  Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53

    CAS  Google Scholar 

  • Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircons—a case study. J Geol 71:721–758

    CAS  Google Scholar 

  • Sinha AK, Wayne DM, Hewitt DA (1992) The hydrothermal stability of zircon: preliminary experimental and isotopic studies. Geochim Cosmochim Acta 56:3551–3560

    Article  CAS  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221

    Article  CAS  Google Scholar 

  • Steiner L (1969) Kalifeldspatisierung in den Palitgesteinen des Pfahlgebietes. Geol Bavarica 60:163–169

    Google Scholar 

  • Steiner L (1972) Alkalisierung im Grundgebirge des Bayerischen Waldes. Neues Jahrb Mineral Abh 116:132–166

    CAS  Google Scholar 

  • Streckeisen AL (1976) Classification of the common igneous rocks by means of their chemical composition: a provisional attempt. Neues Jahrb Mineral Monatsh 1:1–15

    Google Scholar 

  • Teipel U (2003) Obervendischer und unterordovizischer Magmatismus im Bayerischen Wald. Münchner Geol Hefte A33:98

    Google Scholar 

  • Thiele O (1961) Zum Alter der Donaustörung. Verh Geol Bundesanstalt Österreich 1961:131–133

    Google Scholar 

  • Troll G (1967) Die blastokataklastischen Kristallingesteine der Stallwanger Furche, Bayerischer Wald. Geol Bavarica 58:22–33

    Google Scholar 

  • Wallbrecher E, Brandmayr M, Handler R. Loizenbauer J, Maderbacher F, Platzer R (1992) Konjugierende Scherzonen in der südlichen Böhmischen Masse: Variszische und alpidische kinematische Entwicklungen. Mitt Öster Mineral Ges 137:237–252

    Google Scholar 

  • Weinberg RF (1996) Ascent mechanism of felsic magmas: news and views. Trans R Soc Edinburgh Earth Sci 87:95–103

    Google Scholar 

  • White RS, Spence GD, Fowler SR, McKenzie DP, Westbrook GK, Bowen AN (1987) Magmatism at rifted continental margins. Nature 330:439–444

    Article  Google Scholar 

  • Woodhead JA, Rossman GR, Silver LT (1991) The metamictization of zircons: radiation dose dependent structural characteristics. Am Mineral 76:74–82

    CAS  Google Scholar 

  • Zhang LS, Schärer U (1999) Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contrib Mineral Petrol 134:67–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper has benefited from reviews by U. Schaltegger and an unknown reviewer. We wish to thank G. Bartholomä, O. Nzegge, E. Reitter, C. Shang and B. Steinhilber for help in preparing the mineral separates and isotopic measurements, H. Schulz for assistance at the scanning electron microscope, Ch. Berthold for photographic work and H. Taubald for XRF analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Siebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebel, W., Blaha, U., Chen, F. et al. Geochronology and geochemistry of a dyke–host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. Int J Earth Sci (Geol Rundsch) 94, 8–23 (2005). https://doi.org/10.1007/s00531-004-0445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0445-0

Keywords

Navigation