Skip to main content
Log in

Neoproterozoic metamorphism and deformation at the southeastern margin of the East European Craton, Uralides, Russia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alekseyev AA (1984) Riphean and Vendian magmatism in the southern Urals [in Russian]. Nauka, Moscow, pp 1–136

  • Alekseyev AA, Alekseyeva GV (1988) Magmatism, metamorphism and palaeotectonic of the Late Precambrian at the western slope of the Uralides. In: The Upper Precambrian of the southern Urals and the eastern part of the Russian platform [in Russian]. Bashkirskii Nauch, Tsentr Uralskogo, pp 54–59

  • Árkai P (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. J Metamorph Geol 9:723–734

    Google Scholar 

  • Árkai P, Sassi FP, Sassi R (1995) Simultaneous measurements of chlorite and illite crystallinity: a more reliable tool for monitoring low- to very low grade metamorphism in metapelites. A case study from the Southern Alps (NE Italy). Eur J Mineral 7:1115–1128

    Google Scholar 

  • Árkai P, Merriman RJ, Roberts B, Peacor DR, Tóth M (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic and epizonal pelites. Eur J Mineral 8:1119–1137

    Google Scholar 

  • Árkai P, Balogh K, Frey M (1997) The effects of tectonic strain on crystallinity, apparent mean crystallite size and lattice strain of phyllosilicates in low-temperature metamorphic rocks: a case study from the Glarus overthrust, Switzerland. Schweiz Mineral Petrograph Mitteil 77:27–40

    Google Scholar 

  • Árkai P, Ferreiro Mählmann R, Suchý V, Balogh K, Sýkorová J, Frey M (2002) Possible effects of tectonic shear strain on phyllosilicates: a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweiz Mineral Petrograph Mitteil 82:273–291

  • Bastida F, Aller J, Puchkov VN, Juhlin C, Oslianski A (1997) A cross-section through the Zilair Nappe (southern Urals). Tectonophysics 276:253–264

    Article  Google Scholar 

  • Bonhomme M, Thuizat R, Pinault Y, Clauer N, Wendling R, Winkler R, (1975) Méthode de datation Potassium-Argon: appareillage et technique. Note technique. no. 3, Institut Géologique, Université Louis-Pasteur, Strasbourg

  • Bons A-J (1988) Intracrystalline deformation and slaty cleavage development in very low-grade slates from the Central Pyrénées. Geol Ultraiect 56: 1–173

    Google Scholar 

  • Borradaile GJ, Bayly MB, Pwell CMA (1982) Atlas of deformational and metamorphic rock fabrics. Springer, Berlin Heidelberg New York

  • Brix MR, Stöckhert B, Seidel E, Theye T, Thomson SN, Küster M (2002) Thermobarometric data from a fossil zircon partial annealing zone in high pressure–low temperature rocks of eastern and central Crete, Greece. Tectonophysics 349:309–326

    Article  CAS  Google Scholar 

  • Brown D, Puchkov V, Alvarez-Marron J, Perez-Estaun A (1996) The structural architecture of the footwall to the Main Uralian Fault, southern Urals. Earth Sci Rev 40:125–147

    Article  CAS  Google Scholar 

  • Brown D, Juhlin C, Alvarez-Marron J, Perez-Estaun A, Oslianski A (1998) Crustal-scale structure and evolution of an arc-continent collision zone in the southern Urals, Russia. Tectonics 17:158–171

    Article  Google Scholar 

  • Clauer N (1974) Utilisation de la méthode rubidium-strontium pour la datation d’une schitosité de sédiments peu métamorphisés: Application au Précambrien II de la boutonnière de Bou Azzer-El Graara (Anti-Atlas). Earth Planet Sci Lett 22:404–412

    Article  CAS  Google Scholar 

  • Clauer N, Chaudhuri S (1995) Clays in crustal environments: isotope dating and tracing. Springer, Berlin Heidelberg New York, 359 pp

    Google Scholar 

  • Clauer N, Chaudhuri S (1998) Isotopic dating of very low-grade metasedimentary and metavolcanic rocks: techniques and methods. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell, Oxford, pp 202–226

  • Clauer N, Rais N, Schaltegger U, Piqué A (1995) K-Ar systematics of clay-to-mica minerals in a multi-stage low-grade metamorphic evolution. Chem Geol 124:305–316

    Article  CAS  Google Scholar 

  • Clauer N, Weber F, Gauthier-Lafaye F, Toulkeridis T, Sizun JP (1997) Mineralogical, geochemical (REE), and isotopic (K-Ar, Rb-Sr, 18O) evolution of the clay minerals from faulted, carbonate-rich, passive paleomargin of the Southeastern Massif Central, France. J Sedimentol Res 67:923–934

    CAS  Google Scholar 

  • Frank B (1987) Bestimmung des Metamorphosegrades der paläozoischen Schichten des Venn-Großsattels (Linksrheinisches Schiefergebirge) mit Hilfe der Illit-Kristallinität und Untersuchung der Zusammenhänge zwischen dem Metamorphosegrad und den regionalen tektonischen Verhältnissen. Doktorarbeit, Rheinisch Wesfälische Technische Hochschule, Aachen, pp 1–206

  • Fernández-Caliani J, Galan E (1992) Influence of tectonic factors on illite crystallinity: a case study in the Iberian Pyrite belt. Clay Minerals 27:385–388

    Google Scholar 

  • Gafarov RA (1970) On the deep structure of the basement in the conjugation zone between the East-European platform and the Urals [in Russian]. Izvestiya 8(N):3–14

    Google Scholar 

  • Garris MA (1977) The stages of magmatism and metamorphism in the pre-Jurassic history of the Urals and Cis-Urals. Naukala, Moscow, 295 pp

  • Garver JI, Bartholomew A (2001) Partial resetting of fission tracks in detrital zircon: dating low temperature events in the Hudson Valley (NY). GSA Spec Pap 33:83

    Google Scholar 

  • Gee DG, Zeyen HJ (1996) Lithosphere dynamics: origin and evolution of continents. Secretary EUROPROBE 1996, Uppsala University, Uppsala, Sweden

    Google Scholar 

  • Getsen VG, Dedeev VA, Akimova GN, Andreichev VL, Bashilov VI, Belyakova LT, Gornostay BA, Dembovsky BY (1987) The Riphean and Vendian of the European North of the USSR [in Russian]. Komi Filial AN SSSR, Institute of Geology, Syktyvkar

  • Giese U, Glasmacher UA, Kozlov V, Matenaar I, Puchkov V, Stroink L, Bauer W, Ladage S, Walter R (1999) Structural framework of the Bashkirian Anticlinorium, SW Urals. Geol Rundsch 87:526–544

    Article  Google Scholar 

  • Glasmacher U, Matenaar I, Pickel W, Giese U, Kozlov VI, Puchkov V, Stroink L, Walter R (1997) Incipient metamorphism of the western fold-and-thrust belt, Southern Urals, Russia. Beih Z Eur J Mineral 9:124

    Google Scholar 

  • Glasmacher UA, Reynolds P, Alekseev A, Puchkov V, Taylor K, Gorozhanin V, Walter R (1999) 40Ar/39Ar Thermochronology west of the main Uralian Fault, Southern Urals, Russia. Geol Rundsch 87:515–525

    Article  CAS  Google Scholar 

  • Glasmacher UA, Bauer W, Giese U, Reynolds P, Kober B, Puchkov VN, Stroink L, Alekseev A, Willner A (2001a) The metamorphic complex of Beloretzk, SW Urals, Russia: a terrane with a polyphase Meso- to Neoproterozoic thermo–dynamic evolution. Precambrian Res 110:185–213

    Article  CAS  Google Scholar 

  • Glasmacher UA, Tschernoster R, Clauer N, Spaeth G (2001b) K-Ar dating of magmatic sericite crystallites for determination of cooling paths of metamorphic overprints. Chem Geol 175:673–687

    Article  CAS  Google Scholar 

  • Glasmacher UA, Wagner GA, Puchkov VN (2002) Thermo-tectonic evolution of the western fold-and-thrust belt, Southern Urals, Russia, as revealed by apatite fission-track data. Tectonophysics 354:25–48

    Article  Google Scholar 

  • Glasmacher UA, Matenaar I, Bauer W, Puchkov VN (2004) Diagenesis and incipient metamorphism in the western fold-and-thrust belt, SW Urals, Russia. Int J Earth Sci 93: 361–383

    Article  Google Scholar 

  • Goldin BA, Fishman MV, Kalinin YeP, Davydov VA (1973) Volcanic complexes in the North of the Urals [in Russian]. Nauka, Leningrad

  • Gorbatschev R, Bogdanova S (1993) Frontiers in the Baltic Shield. Precambrian Res 64:3–21

    Article  Google Scholar 

  • Gorokhov IM, Semikhatov MA, Baskakov AV (1995) Isotopic composition of strontium in carbonate rocks of the Riphean, Vendian and Lower Cambrian of Siberia. Stratigr Geol Correl 3:3-33

    Google Scholar 

  • Gorozhanin VM (1990) Geochronology of the Lower Vendian of the Southern Urals. In: The stratigraphy of the Upper Proterozoic of the USSR (Riphean and Vendian) [in Russian]. Bashkirian Science Centre, Ufa, pp 51–52

  • Gorozhanin VM (1995) Rubidium-strontium isotope method in solving of problems of the Southern Urals [in Russian]. Referat of the Candidate Thesis, Institute of Geology and Geochemistry, Ekaterinburg, 23 pp

  • Guggenheim S, Bain DC, Bergaya F, Brigatti MF, Drits VA, Eberl DD, Formoso MLL, Galán E, Merriman RJ, Peacor DR, Stanjek H, Watanabe T (2002) Report of the association internationale pour L’Étude des argyles (AIPEA) nomenclature committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “Crystallinity index”. Clays Clay Miner 50:406–409

    Article  CAS  Google Scholar 

  • Haq BU, Eysinga van FWB (1998) Geological time table, 5th edn. Elsevier, Amsterdam

  • Hasebe N, Mori S, Tagami T, Matsui R (2003) Geological partial annealing zone of zircon fission-track system: additional constrains from the deep drilling MITI-Nishikubiki and MITI-Mishima. Chem Geol 199:45–52

    CAS  Google Scholar 

  • Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180

    CAS  Google Scholar 

  • Huon S, Piqué A, Clauer N (1987) Etude de l’orogenèse hercynienne au Maroc par la datation K-Ar de l’évolution métamorphique de schistes ardoisiers. Sci Géol Bull 40:273–284

    Google Scholar 

  • Huon S, Cornée JJ, Piqué A, Rais N, Clauer N, Liewig N, Zayane R (1993) Mise en évidence au Maroc d’évènements thermique d’âge triasico-liasique liés à l’ouverture de l’Atlantique. Soc Géol Fr 164:165–176

    Google Scholar 

  • Ivanov SN (1987) On the Baykalides of the Urals and nature of metamorphic complexes flanking eugeosynclines [in Russian]. Institute of Geology and Geochemistry, Sverdlovsk

  • Jaboyedoff M, Cosca MA (1999) Dating incipient metamorphism using 40Ar/39Ar geochronology and XRD modelling: a case study from the Swiss Alps. Contrib Mineral Petrol 135:93–113

    Article  CAS  Google Scholar 

  • Kasuya HG, Naeser CW (1988) The effect of α-damage of fission-track annealing in zircon. Nucl Tracks Radiat Measure 14:477–480

    Article  CAS  Google Scholar 

  • Kheraskov NP (1967) Tectonica and formations [in Russian]. Izbrannye trudy Nauka, Moscow

  • Kisch HJ (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J Metamorph Geol 9:665–670

    CAS  Google Scholar 

  • Kligfield R, Hunziker J, Dallmeyer RD, Schamel S (1986) Dating of deformation phases using the K-Ar and 40Ar/39Ar techniques: results from the Northern Apennines. J Struct Geol 8:781–798

    Article  CAS  Google Scholar 

  • Kozlov VI (1982) Upper Riphean and Vendian in the Southern Urals [in Russian]. Nauka, Moscow, pp 1–128

  • Kozlov VI, Krasnobaev AA, Larionov NN, Maslov AV, Sergeeva ND, Ronkin YuL, Bibikova EV (1989) Lower Riphean of the southern Urals [in Russian]. Nauka, Moscow, 208 pp

  • Kozlov VI, Sinitsyna ZA, Kulagina EI, Pazukhin VN, Puchkov VN, Kochetkova NM, Abramova AN, Klimenko TV, Sergeeeva ND (1995) Guidebook of excursion for the Palaeozoic and Upper Precambrian sections of the western slope of the Southern Urals and Preuralian regions. Ufa Science Center, RAS, Ufa, 165 pp

  • Kralik M (1983) Interpretation of K-Ar and Rb-Sr data from fine fractions of weakly metamorphosed shales and carbonate rocks at the base of the Northern Calcareous Alps (Salzburg, Austria). Tschermaks Minera Petrol Mitteil 32:49–67

    CAS  Google Scholar 

  • Krasnobaev AA (1986) Zircon as an indicator of geological processes [in Russian]. Naukala, Moscow, 145 pp

  • Krumm S, Buggisch W (1991) Sample preparation effects on illite crystallinity measurement: grain-size gradation and particle orientation. J Metamorph Geol 9:671–677

    CAS  Google Scholar 

  • Leitch EC, McDougall I (1979) The age of orogenesis in the Nambucca Slate belt: A K-Ar study of low-grade regional metamorphic rocks. J Geol S Aust 26:111–119

    CAS  Google Scholar 

  • Lobkovsky LI, Cloetingh S, Nikishin AM, Volozh YuA, Lankreijer AC, Belyakov SL, Groshev VG, Fokin PA, Milanovsky EE, Pevzner LA, Gorbachev VI, Korneev MA (1996) Extensional basins of the former Soviet Union: structure, basin formation mechanisms and subsidence history. Tectonophysics 266:251–285

    Article  Google Scholar 

  • Maslov AV, Erdtmann BD, Ivanov KS, Ivanov SN, Krupenin MT (1997) The main tectonic events, depositional history, and the paleogeography of the Southern Urals during the Riphean-Early Palaeozoic. Tectonophysics 276(1–4):313–335

    Google Scholar 

  • Maslov AV, Krupenin MT, Gareev EZ, Anfimov LV (2001) The Riphean of the western slope of the Southern Urals, vol 1. Zavarit. Inst. Geol., Ekaterinburg, 351 pp

  • Matenaar I, Glasmacher UA, Pickel W, Giese U, Pazukhin VN, Kozlov VI, Puchkov VN, Stroink L, Walter R (1999) Incipient metamorphism between Ufa and Beloretzk, western fold-and-thrust belt, Southern Urals, Russia. Geol Rundsch 87:545–560

    Article  Google Scholar 

  • Merriman RJ, Frey M (1999) Patterns of very low-grade metamorphism in metapelitic rocks. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell, Oxford, pp 61–107

  • Merriman RJ, Peacor DR (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey M, Robinson D (eds) Low-grade metamorphism. Blackwell, Oxford, pp 10–60

  • Merriman RJ, Roberts B, Peacor DR, Hirons SR (1995) Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelites microfabrics in the Southern Uplands thrust terrane, Scotland. J Metamorph Geol 13:559–576

    CAS  Google Scholar 

  • Mullis J, Rahn MK, Schwer P, de Capitani C, Stern WB, Frey M (2002) Correlation of fluid inclusion temperatures with illite “crystallinity” data and clay mineral chemistry in sedimentary rocks from the external part of the Central Alps. Schweiz Mineral Petrogr Mitteil 82:325–340

    CAS  Google Scholar 

  • Murrell GR (2003) The long-term thermal evolution of Central Fennoscandia revealed by low-temperatue thermochronology. PhD Thesis, Vrihe Universiteit, Amsterdam, 219 pp

  • Nalivkin V, Yacobson K (1985) Russian platform [in Russian]. Nedra, Leningrad, 356 pp

  • Nikishin V, Ziegler PA, Stephenson RA, Cloetingh SAPL, Furne AV, Fokin PA, Ershov AV, Bolotov SN, Korotaev MV, Alekseev AS, Gorbachev VI, Shipilov EV, Lankreijer A, Bembinova EY, Shalimov IV (1996) Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution. Tectonophysics 268:23–63

    Article  Google Scholar 

  • Nikishin V, Furne AV, Ziegler P (1997) Riphean–Vendian geologica history and geodynamics of the East European Craton. Moscow Univ Geol Bull 52:9–20

    Google Scholar 

  • Nyk R (1985) Illite crystallinity in Devonian slates of the Meggen mine (Rhenish Massif). Neues Jahrb Miner Monatsh 268–276

  • Ovchinnikova GV, Gorokhov IM (2000) Pb-Pb dating of carbonate sedimentary rocks of the Upper Proterozoic [in Russian]. In: Problems of the lithology, geochemistry and ore genesis of the sedimentary process. Abstr. of the 12th All-Russian Lithological Meeting 2, Moscow, pp 84–88

  • Ovchinnikova GV, Gorokhov IM, Semikhatov MA (1995) The time of formation and transformation of the deposits of the Inzer svita, Upper Riphean of the Southern Urals: general problems of the stratigraphy and geological history of the Riphean of northern Eurasia [in Russian]. Uralian Branch of RAS, Ekaterinburg, pp 73–75

  • Ovchinnikova GV, Vasilieva IM, Semikhatov MA (1998) U-Pb systematics of Proterozoic carbonate rocks: Inzer svita of the Upper Riphean (Southern Urals) [in Russian]. Stratigr Geol Correl 6:20–31

    Google Scholar 

  • Parnachev VP (1981) Volcanic complexes and tectonic regime of the western slope of the Urals in the Late Precambrian [in Russian]. In: Ancient volcanism of the Southern Urals. Ufimian Scientific Centre, Ufa, pp 18–30

  • Parnachev VP, Kozlov VI, Titunina IV (1981) New data on the structure, composition and origin of the Arsha metavolcanic complex of the Southern Urals (Late Precâmbrian) [in Russian]. Sverdlovsk, pp 69–86

  • Passchier CW, Trouw RAJ (1996) Microtectonics. Springer, Berlin Heidelberg New York, 289 pp

  • Peterson JA, Clarke JW (1983) Petroleum geology and resources of the Volga-Ural Province, USSR. USGS Circular 885, USGS, Reston, Virginia, 27 pp

  • Powell CM (1979) A morphological classification of rock cleavage. Tectonophysics 58:21–34

    Article  Google Scholar 

  • Puchkov VN (1997) Structure and geodynamics of the Uralian orogen. In: Burg JP, Ford M (eds) Orogeny through time. Geol Soc London Spec Publ 121:201–236

    Google Scholar 

  • Puchkov VN (2000) Palaeogeodynamics of the Central and Southern Urals. Pauria, Ufa, pp 1–145

  • Rahn MKW (2001) The metamorphic and exhumation history of the Helvetic Alps, Switzerland, as revealed by apatite and zircon fission tracks.PhD Thesis, Universität Freiburg, Freiburg, 140 pp

  • Reuter A (1987) Implications of K-Ar ages of whole-rock and grain-size fractions of metapelites and intercalated metatuffs within an anchizonal terrane. Contrib Mineral Petrol 97:105–115

    CAS  Google Scholar 

  • Riley BCD (2002) Preferential thermal resetting of fission tracks in radiation-damaged detrital zircon grains: case study from the Laramide of Arizona. GSA Paper no. 212-12, GSA, Boulder, Colorado

  • Roberts B, Merriman RJ (1985) The distinction between Caledonian burial and regional metamorphism in metapelites from north Wales: an analysis of isocryst patterns. J Geol Soc 142:615–624

    Google Scholar 

  • Roberts D, Siedlecka A (2002) Timanian orogenic deformation along the northeastern margin of Baltica, northwest Russia and northeast Norway, and Avalonia-Cadomian connections. Tectonophysics 352:169–184

    Article  Google Scholar 

  • Romanov VA, Isherskaya MV (1994) On the Riphean series of the Western Bashkiria [in Russian]. Institute of Geology, Ufa

  • Schaltegger U, Stille P, Rais N, Piqué A, Clauer N (1994) Neodymium and strontium isotopic dating of diagenesis and low-grade metamorphism of argillaceous sediments. Geochim Cosmochim Acta 58:1471–1481

    Article  CAS  Google Scholar 

  • Semikhatov MA, Shurkin KA, Aksenov EM (1991) A new Precambrian stratigraphic scale in the USSR. Isv AN USSR Ser geol 4:3–13

    Google Scholar 

  • Seward D, Pérez-Estaún A, Puchkov VN (1997) Preliminary fission-track results from the Southern Urals: Sterlitamak to Magnitogorsk. Tectonophysics 276:281–290

    Article  CAS  Google Scholar 

  • Sobolev AE (1996) Middle Riphean basic dikes in the Yamantau Anticlinorium. Doklady Earth Sci 359(A):356–359

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  CAS  Google Scholar 

  • Stroink L, Frese K, Giese U, Matenaar I, Kozlov VI, Glasmacher U, Puchkov V, Walter R (1997) Compositional framework of Upper Proterozoic sandstones of the Southern Urals: implications for a Pre-Uralian orogenic event. 18th IAS, Heidelberg, p 324

    Google Scholar 

  • Tagami T, Shimada C (1996) Natural long-term annealing of zircon fission track system around a granitic pluton. J Geophys Res 101(B):11353–11364

    Article  Google Scholar 

  • Tagami T, Galbraith RF, Yamanda R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van den haute P, De Corte F, (eds) Advances in fission-track geochronology. Kluwer, Dordrecht, pp 99–112

  • Toulkeridis T, Goldstein SL, Clauer N, Kröner A, Lowe DR (1994) Sm-Nd dating of fig tree clay minerals of the Barberton Greenstone Belt. South African Geol 22:199–202

    Article  CAS  Google Scholar 

  • Wang H, Frey M, Stern WB (1996) Diagenesis and metamorphism of clay minerals in the Helvetic alps of Eastern Switzerland. Clays Clay Miner 44:96–112

    CAS  Google Scholar 

  • Warr LN, Rice AHN (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. J Metamorph Geol 12:141–152

    CAS  Google Scholar 

  • Willner AP, Emolaeva T, Stroink L, Glasmacher UA, Giese U, Puchkov V, Kozlov VI, Walter R (2001) Contrasting provenance signals in Riphean and Vendian sandstones in the SW Urals (Russia): constraints for a change from passive to active continental margin conditions in the Neoproterozoic. Precambian Res 110:215–239

    Article  CAS  Google Scholar 

  • Willner AP, Sindern S, Metzger R, Emolaeva T, Kramm U, Puchkov V, Kronz A (2003) Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): early time marks at the eastern margin of Baltica. Precambian Res 124:1–20

    Article  CAS  Google Scholar 

  • Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental study. Chem Geol 122:249–258

    Article  CAS  Google Scholar 

  • Zaitseva TS, Ivanovskaya TA, Gorokhov IM (2000) Rb-Sr age and NR-spectres of glauconites of the Uk svita, Upper Riphean Southern Urals. In: Isotopic dating of geological processes: new method and its results [in Russian]. GEOS, Moscow, pp 144–147

  • Zhao MW, Ahrendt H, Wemmer K (1997) K-Ar systematics of illite/smectite in argillaceous rocks from the Ordos basin, China. Chem Geol 136:153–169

    Article  CAS  Google Scholar 

  • Zhao B, Clauer N, Robb LJ, Zwingmann H, Toulkeridis T, Meyer FM (1999) K-Ar dating of white micas from the Ventersdorp contact reef of the Witwatersrand Basin, South Africa: timing of post-depositional alteration. Mineral Petrol 66:149–170

    CAS  Google Scholar 

Download references

Acknowledgments

Fieldwork in the Ural and laboratory studies were funded by the Deutsche Forschungsgemeinschaft (DFG) grants Gl 182/3-1, /3-2, /3-3, /3-4, which are gratefully acknowledged. This paper is a contribution to EUROPROBE (URALIDES). EUROPROBE is co-ordinated within the International Lithosphere Program and is sponsored by the European Science Foundation. As a representative of the Russian team during the fieldwork, we thank Dr. V. N. Baryshev for his scientific and logistical help. Special thanks are given to Prof. R. Walter, Drs. U. Giese, L. Stroink and I. Matenaar for their help and support during fieldwork and many fruitful discussions. Furthermore, the authors like to thank Prof. Eynatten, Prof. Massonne, Drs. Merriman and Árkai, and an unknown reviewer for their helpful suggestions on earlier versions of the manuscript. We acknowledge the technical assistance of R. Wendling and T. Peyrone (Centre de Géochimie de la Surface, CNRS/ULP). This is EOST contribution no. AAA.NNN-UMR7517x.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Glasmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasmacher, U.A., Bauer, W., Clauer, N. et al. Neoproterozoic metamorphism and deformation at the southeastern margin of the East European Craton, Uralides, Russia. Int J Earth Sci (Geol Rundsch) 93, 921–944 (2004). https://doi.org/10.1007/s00531-004-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0426-3

Keywords

Navigation