Skip to main content
Log in

The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Diorites and related rocks in the Mérida area of northern Ossa-Morena (SW Iberia) are intrusive into Precambrian metavolcanic and metasedimentary sequences. Cumulate products from the H2O-rich magmas are amphibole-rich gabbros to hornblendites. Major and trace element compositions, including Sr and Nd isotope data, allow the definition of a calc-alkaline series likely formed in relation to an immature arc setting. Crystallization of the intrusives has been established between ca. 570 and 580 Ma by U-Pb dating of constituent zircons. Garnet growth in dioritic rocks reflects a tectono–thermal overprint dated by Sm-Nd internal isochrons at around 555 Ma. Older Sm-Nd and Lu-Hf results between ca. 593 and 637 Ma on the same rocks suggest an earlier stage of regional metamorphism within the arc environment. The northern Ossa-Morena composite batholith and related metamorphic units have been tectonized and dismembered in the course of subsequent low-grade events during final stages of the Cadomian orogeny and the Variscan cycle. The units studied represent a well preserved segment of the arc region that evolved in Neoproterozoic times along the western border of Gondwana to conform the Cadomian–Avalonian basement of the Hercynian realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 A
Fig. 4 A
Fig 5 A
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11 A
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ábalos B (1992) Variscan shear-zone deformation of late Precambrian basement in SW Iberia, implications for circum-Atlantic pre-Mesozoic tectonics. J Struct Geol 14:807–823

    Google Scholar 

  • Ábalos B, Díaz Cusí J (1995) Correlation between seismic anisotropy and major geological structures in SW Iberia: a case study on continental lithosphere deformation. Tectonics 14:1021

  • Anczkiewicz R, Vance D (2000) Isotopic constraints on the evolution of metamorphic conditions in the Jijal-Patan complex and the Kamila Belt of the Kohistan arc, Pakistan Himalaya. In: Khan MA, Treloar PJ, Searle MP, Jan MA (eds) Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geol Soc Lond Spec Publ 170:321–331

    Google Scholar 

  • Apalategui O, Borrero JD, Higueras P (1983) División en grupos de rocas en Ossa-Morena oriental. Temas Geol Min 7:73–80

    Google Scholar 

  • Apalategui O, Contreras F, Jorquera A, Villalobos M, Eguíluz L (1988) Hoja 1:50.000, nº 804 (Oliva de Mérida), Mapa Geológico Nacional (MAGNA). Instituto Geológico y Minero de España, Madrid

    Google Scholar 

  • Apraiz A (1998) Geología de los macizos de Lora del Río y Valuengo (Zona de Ossa-Morena). Evolución tectonometamórfica y significado geodinámico. PhD Thesis, Univ País Vasco, Bilboa, Spain, pp 1–575

  • Apraiz A, Eguíluz L (2001) Hercynian tectono-thermal evolution associated with crustal extension and exhumation of the Lora del Río metamorphic core compex (Ossa-Morena Zone, Iberian Massif, SW Spain). Int J Earth Sci 91:76–92

    Google Scholar 

  • Arth NT (1976) Behaviour of trace elements during magmatic processes-a summary of theoretical models and their applications. US Geol Sur J Res 4:41–47

    CAS  Google Scholar 

  • Bandrés A, Eguíluz L, Gonzalo JC, Carracedo M (1999) El macizo de Mérida, un arco volcánico cadomiense reactivado en el Hercínico. Geogaceta 25:27–30

    Google Scholar 

  • Bandrés A, Eguíluz L, Gil Ibarguchi JI, Palacios T (2002) Geodynamic evolution of a Cadomian arc region: the northern Ossa-Morena Zone, Iberian Massif. Tectonophysics 352:105–120

    Article  Google Scholar 

  • Bellon H, Blachère H, Crousilles M, Deloche Ch, Dixsaut C, Hertrich B, Prost-Dame V, Rossi P, Simon D, Tamain G (1979) Radiochronologie, évolution tectono-magmatique et implications métallogéniques dans les Cadomo-variscides du Sud-Est Hespérique. Bull Soc Géol Fr 21:113–120

  • Blatrix P, Burg JP (1981) 40Ar/39Ar Dates from Sierra Morena (southern Spain): Variscan metamorphism and Cadomian orogeny. Neues Jahrb Miner Abh 10:470–478

    Google Scholar 

  • Burg JP, Bodinier JL, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle-crust transition and infra-arc mantle diapirs in the Kohistan Complex (Pakistani Himalaya): petro-structural evidence. Terra Nova 10:74–80

    Article  Google Scholar 

  • Cantagrel F, Pin C (1984) Major, minor and rare earth elements determination in 25 standards by inductively coupled plasma-atomic emission spectrometry. Geostat Newslett 18:123–138

    Google Scholar 

  • Castro A (1988) Los granitoides deformados de la banda del Guadámez (La Serena, Badajoz). In: Bea F, Carnicero A, Gonzalo JC, López Plaza M, Rodríguez Alonso MD (eds) Geologia de los granitoides y rocas asociadas del Macizo Hespérico: Libro homenaje a L.C. García Figuerola. Rueda, Madrid pp 413–426

  • Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89:(B):525-534

    Google Scholar 

  • Compston W, Kinny PD, Williams IS, Foster JJ (1986) The age and Pb loss behaviour of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth Planet Sci Lett 80:71–81

    Article  CAS  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen and Unwin, London, 450 pp

  • Dale J, Holland T, Powell R (2000) Hornblende–garnet–plagioclase thermobarometry: a natural assemblage calibration of the thermodynamics of hornblende. Contrib Mineral Petrol 140:353–362

    Article  CAS  Google Scholar 

  • Dallmeyer RD, Quesada C (1992) Cadomian vs. Variscan evolution of the Ossa-Morena Zone (SW Iberia): field and 40Ar/39Ar mineral age constraints. Tectonophysics 216:339–364

    Article  CAS  Google Scholar 

  • De Paolo D (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291:193–196

    CAS  Google Scholar 

  • D’Lemos RS, Strachan RA, Topley CG (eds) (1990) The Cadomian Orogeny. Geol Soc London Spec Publ 51:1–423

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    CAS  Google Scholar 

  • Eckert JO Jr, Newton RC, Kleppa OJ (1991) The ΔH of reaction and recalibration of garnet–pyroxene–plagioclase–quartz geobarometers in the CMAS system by solution calorimetry. Am Mineral 76:148–160

    CAS  Google Scholar 

  • Eguíluz L (1988) Petrogénesis de rocas ígneas y metamórficas en el Anticlinorio Burguillos-Monesterio, Macizo Ibérico Meridional. PhD Thesis, Univ País Vasco, Bilboa, Spain, pp 1–694

  • Eguíluz L, Ábalos B (1992) Tectonic setting of Cadomian low-pressure metamorphism in the central Ossa-Morena Zone (Iberian Massif, SW Spain). Precambr Res 56:113–137

    Article  Google Scholar 

  • Eguíluz L, Ramón Lluch R (1983) La estructura del sector central del dominio de Arroyomolinos, Anticlinorio Olivenza-Monesterio, Ossa Morena. Stud Geol Salamanca 18:171–192

    Google Scholar 

  • Eguíluz L, Apraiz A, Ábalos B, Martínez-Torres LM (1995) Evolution de la zone d’Ossa Morena (Espagne) au course du Protérozöique supérieur: corrélations avec l’orogène cadomien nord armoricain. Géol Fr 3:35–47

    Google Scholar 

  • Eguíluz L, Gil Ibarguchi JI, Ábalos B, Apraiz A (2000) Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena Zone and related areas of the Iberian Massif. Geol Soc Am Bull 112:1398–1413

    Article  Google Scholar 

  • Evensen MM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  CAS  Google Scholar 

  • Fernández Suárez J, Gutiérrez-Alonso G, Jeffries TE (2002) The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and Planetary Science Letters, 204, 75-88

  • Fujimaki H, Tatsumoto M, Aoki K (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. Proceedings of the 14th Lunar Planetary Science Conference, Part 2. J Geophys Res 89(B):662–672

    CAS  Google Scholar 

  • Ganguly J, Tirone M, Hervig RL (1998) Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks. Science 281:805–807

    Article  CAS  PubMed  Google Scholar 

  • García Casquero JL, Boelrijk NAIM, Chacón J, Priem HNA (1985) Rb-Sr evidence for the presence of Ordovician granites in the deformed basement of the Badajoz-Córdoba Belt, SW Spain. Geol Rundsch 74:379–384

    Google Scholar 

  • Gasparon M, Varne R (1998) Crustal assimilation versus subducted sediment input in west Sunda arc volcanics: an evaluation. Mineral Petrol 64:89–117

    CAS  Google Scholar 

  • Gertisser R, Keller J (2003) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Mepari Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda arc magma genesis. J Petrol 44:457–489

    Article  CAS  Google Scholar 

  • Gonzalo JC (1987) Petrología y estructura del Basamento en el área de Mérida (Extremadura Central). PhD Thesis, Univ Salamanca, Salamanca, Spain pp 1-327

  • Gutiérrez-Alonso G, Fernández-Suárez J, Jeffries TE, Jenner GA, Tubrett MN, Cox R, Jackson SE (2003) Terrane accretion and dispersal in the northern Gondwana margin: an Early Paleozoic analogue of a long-lived active margin. Tectonophysics 365:221–232

    Article  Google Scholar 

  • Hoogewerff JA, van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997) U-series, Strontium-Neodynium-Lead isotope and trace element systematics across an active island arc-continent collision zone: implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61:1057–1072

    Article  CAS  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548

    CAS  Google Scholar 

  • Irving AF, Frey FA (1978) Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolite composition. Geochim Cosmochim Acta 42:771–787

    Article  CAS  Google Scholar 

  • Julivert M, Fontboté JM, Ribeiro A, Conde L (1972) Mapa Tectónico de la Península Ibérica y Baleares a escala 1:1.000.000 y Memoria Explicativa. Publicaciones del Instituto Geológico y Minero de España, Madrid, pp1–113

  • Kohn MJ, Spear FS (1990) Two new barometers for garnet amphibolites with applications to eastern Vermont. Am Mineral 75:89–96

    CAS  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46(4):637–649

    Article  CAS  Google Scholar 

  • Krogh Ravna E (1998) Distribution of Fe2+ and Mg between coexisting garnet and hornblende in synthetic and natural systems: an empirical calibration of the garnet-hornblende Fe-Mg geothermometer. Lithos 53:265–277

    Google Scholar 

  • Krogh Ravna E (2000) The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metamorph Geol 18:211–219

    Article  Google Scholar 

  • Lancelot JR, Allegret A (1982) Radiochronologie U/Pb de l’orthogneiss alcalin de Pedroso (Alto Alentejo, Portugal) et évolution anté-hercynienne de l’Europe occidentale. Neues Jahrb Miner Abh 9:385–394

    Google Scholar 

  • Lotze F (1945) Zur gliederung der varisziden der Iberischen Meseta. Geol Forsch 4:78–92

    Google Scholar 

  • Ludwig KR (1993) Pbdat: a computer program for processing Pb–U–Th isotope data, version 1.24. Open-File Report 88–542, US Geological Survey, Reston, Virginia, pp 1–32

  • Ludwig KR (2001) User manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, Spec. Publ. no. 1a, 56 pp

  • Martines Poyatps DJ (1997) Estrucura del Borde Meridional de la Zona Centroibérica y su relacción con el contacto entre las Zonas Centroibérica y de Ossa Morena. PhD Thesis, Univ. Granada, Granada, pp 1–255

  • McCulloch MT, Gamble AJ (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102(2–3):358–374

    Google Scholar 

  • Miyashiro A (1978) Nature of alkalic volcanic rock series. Contrib Mineral Petrol 66:91–104

    CAS  Google Scholar 

  • Murphy JB, Nance RD (1991) Supercontinent model for the contrasting character of Late Proterozoic Orogenic belts. Geology 19:469–472

    Article  Google Scholar 

  • Murphy JB, Eguíluz L, Zulauf G (2002) Cadomian Orogens, peri-Gondwanan correlatives and Laurentia–Baltica connections. Tectonophysics 352:1–9

    Article  Google Scholar 

  • Nance RD, Thompson MD (eds) (1996) Avalonian and related Peri-Gondwanan terranes of the circum-North Atlantic. Geol Soc Am Spec Pap 304:1–390

    Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectono-stratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78

    Article  Google Scholar 

  • Ochsner A (1993) U-Pb Geochronology of the Upper Proterozoic-Lower Paleozoic geodynamic evolution in the Ossa-Morena Zone (SW Iberia): constraints on the timing of the Cadomian Orogeny. PhD Thesis no. 10392, ETH, Zurich, Switzerland, pp 1–430

  • Ordóñez B (1998) Geochronological studies of the Pre-Mesozoic basement of the Iberian Massif: the Ossa Morena Zone and the Allochthonous Complexes within the Central Iberian Zone. PhD Thesis, no. 12940, ETH, Zürich, Switzerland, pp 1–235

  • Paquette JL, Pin C (2001) A new miniaturized extraction chromatography method for precise U-Pb zircon geochronology. Chem Geol 176:311–319

    Article  CAS  Google Scholar 

  • Paquette JL, Gleizes G, Leblanc D, Bouchez JL (1997) Le granite de Bassiés (Pyrénées): un pluton syntectonique d’âge Westphalien. Géochronologie U–Pb sur zircons. CR Acad Sci Paris 324:387–392

    Google Scholar 

  • Pattison DRM (2003) Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase ± quartz-bearing metabasites with respect to the amphibolite and granulite facies. J Metamorph Geol 21:21–34

    Article  CAS  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate related rocks. Wiley, London, pp 525–548

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81

    CAS  Google Scholar 

  • Pereira MF (1999) Caracterizaçao da estructura dos dominios sententrionais da Zona de Ossa-Morena e seu limite com a Zona Centro-Ibérica, no nordeste Alentejano. PhD Thesis, Univ Évora, Évora, Portugal, pp 1–115

  • Pieren A (2000) Las sucesiones anteordovícicas de la región oriental de la Provincia de Badajoz y área contigua de la de Ciudad Real. PhD Thesis, Univ Complutense, Madrid, Spain, pp 1–379

  • Pin C, Joannon S (1997) Low-level analysis of lanthanides in eleven silicate rock reference materials by ICP-MS after group separation using cation-exchange chromatography. Geosci Newslett 21:43–50

    CAS  Google Scholar 

  • Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography : application to isotopic analyses of silicate rocks. Anal Chem Acta 339:79–89

    Article  CAS  Google Scholar 

  • Pin C, Liñán E, Pascual E, Donaire T, Valenzuela A (2002) Late Neoproterozoic crustal growth in the European Variscides: Nd isotope and geochemical evidence from the Sierra de Córdoba Andesites (Ossa-Morena Zone, southern Spain). Tectonophysics 352:133–151

    Article  CAS  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment: implications for the crust and mantle. Chem Geol 145:325–394

    Article  CAS  Google Scholar 

  • Priem HNA, Boelrijk NAIM, Verschure RH, Hebeda EH, Verdurmen EAT (1970) Dating events of acid plutonism through the Paleozoic of the western Península. Eclogae Geol Helvet 63:255–274

    CAS  Google Scholar 

  • Quesada C, Dallmeyer RD (1994) Tectonothermal evolution of the Badajoz-Córdoba shear zone (SW Iberia): characteristics and 40Ar/39Ar mineral age constraints. Tectonophysics 231:195–213

    Article  CAS  Google Scholar 

  • Ringuette L, Martignole J, Windley BF (1998) Pressure–temperature evolution of garnet-bearing rocks from the Jijal complex (western Himalayas, northern Pakistan): from high-pressure cooling to decompression and hydration of a magmatic arc. Geol Bull Univ Peshawar 31:167–168

    Google Scholar 

  • Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan Terrane, western Himalayas). Geology 27:139–142

    Article  CAS  Google Scholar 

  • Santamaría J (1995) Los yacimientos de fosfato sedimentario en el límite Precámbrico-Cámbrico del Anticlinal de Valdelacasa (Zona Centro-Ibérica). PhD Thesis, Univ Aut, Barcelona, 1–233 pp

  • Schäfer HJ (1990) Geochronological investigations in the Ossa-Morena Zone, SW Spain. PhD Thesis no. 9246, ETH, Zurich, Switzerland, pp 1–153

  • Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium-Hafnium clock. Science 293:683–687

    CAS  PubMed  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure–temperature-time-paths. Mineral Soc Am, Washington, DC, pp 1–799

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  CAS  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geoll Soc Spec Publ 42:313–345

    Google Scholar 

  • Stampfli GM, von Raumer JF, Borel GD (2002) Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martínbez Catalán JR, Hatcher RD, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the Late Paleozoic basement. Boulder, Colorado, Geol Soc Am Spec Pap 364:263–268

  • Valladares MI, Barba P, Ugidos JM, Colmenero JR, Armenteros I (2000) Upper Proterozoic–Lower Cambrian sedimentary successions in the Central Iberian Zone (Spain): sequence stratigraphy, petrology and chemostratigraphy—implications for other European areas. Int J Earth Sci 89:2–20

    Article  CAS  Google Scholar 

  • Vidal G, Palacios T, Gámez-Vintaned JA, Díez Balda MA, Grant SWF (1994a) Neoproterozoic-early Cambrian geology and palaeontology of Iberia. Geol Mag 131:729–765

    Google Scholar 

  • Vidal G, Jensen S, Palacios T (1994b) Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain. Geol Mag 131:169–179

    Google Scholar 

  • Vidal G, Palacios T, Moczydlowska M,Gubanov AP (1999) Age constraints from small shelly fossils on the early Cambrian terminal Cadomian Phase in Iberia. Geol Soc Stockholm 121:137–143

    Google Scholar 

  • Von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents: the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22

    Article  Google Scholar 

  • Vroon PZ, Van Bergen MJ, White WM, Varekamp JC (1993) Sr-Nd-Pb isotope systematics of Banda arc, Indonesia: combined subduction and assimilation of continental material. J Geophys Res 98:22349–22366

    Google Scholar 

  • Wetherill GS (1956) Discordant uranium-lead ages, I. Trans Am Geophys Union 37:320–326

    CAS  Google Scholar 

  • Wetherill GS (1963) Discordant uranium-lead ages, II. Discordant ages resulting from diffusion of lead and uranium. J Geophys Res 68:2957–2965

    CAS  Google Scholar 

  • Wilson,M (1989) Igneous petrogenesis. Unwin Hyman, London, 466 pp

  • Yamamoto H, Nakamura E (1996) Sm-Nd dating of garnet granulites from the Kohistan complex, northern Pakistan. J Geol Soc Lond 153:965–969

    CAS  Google Scholar 

  • Yamamoto H, Nakamura E (2000) Timing of magmatic and metamorphic events in the Jijal complex of the Kohistan arc deduced from Sm-Nd dating of mafic granulites. In: Khan MA, Treloar PJ, Searle MP, Jan MA (eds) Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geol Soc Lond Spec Publ 170:313–319

    Google Scholar 

  • Zhou B, Hensen BJ (1995) Inherited Sm/Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chem Geol 121:317–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Spanish MCYT (MAT2000–142, BTE20001-71 and BTE20003-3823) and French-Spanish cooperation “Picasso” (1997, 1998) grants is acknowledged. This manuscript is a contribution to IGCP 453. The authors are grateful to Dr. B. Ábalos for helpful discussions on the structural and petrological features of the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Gil Ibarguchi.

Appendix

Appendix

Analytical techniques

Whole-rock major and trace element analysis: Major (wt.%) and trace element (μg/g) concentrations were measured by simultaneous ICP-AES at the University of Bilbao following procedures described by Cantagrel and Pin (1984) and Pin and Joannon (1997). Total iron is given as Fe2O3. Analytical uncertainty for trace elements is estimated as 10% or better.

Isotopic analysis: Isotope dilution thermal ionisation mass spectrometry (ID-TIMS) U–Pb analyses were performed at the CNRS, Clermont-Ferrand on the least magnetic (2° forward and side tilt at 2.2 A using a Frantz Isodynamic magnetic barrier separator), mechanically abraded (Krogh 1982), and crack-free zircon grains. Zircon dissolution, chemical separation of U and Pb, and isotope analyses were carried out according to methods described by Paquette and Pin (2001). The U and Pb isotopes were analysed on a VG Sector 54–30 mass spectrometer in multi-collector static mode. The isotopic ratios are corrected for mass discrimination (0.1±0.015% per amu for Pb and U), isotopic tracer contribution and analytical blanks: 10 pg for Pb and 1 pg for U. Initial common Pb is determined for each fraction in using the Stacey and Kramers (1975) two-step model. Data errors (2σ) of the zircon fractions and discordia lines were calculated using the PBDAT 1.24 and Isoplot/Ex 2.49b programs (Ludwig 1993, 2001).

Minerals for SHRIMP U-Pb isotopic analyses were hand-picked from defined sieve 0.35 mm and magnetic separator. Zircons were separated using a magnetic drum separator, a Frantz isodynamic separator and heavy liquids. The zircons selected are mounted in epoxy and polished until an equatorial section is reached, the zircons were studied under back-scatter electronic microscope with a cathodoluminiscence device at the Metallforschung Institut, ETH Zürich. The same mount is used for in situ ion-microprobe analyses (SHRIMP-I and II, Sensitive High Resolution Ion Micro Probes) carried out at ANU (Australian National University) in Canberra, Australia. For a full description of the ion-microprobe technique and data acquisition we refer to Compston et al. (1984, 1986). All U-Pb ages are referenced to a 206Pb/238U value of 0.0928 (equivalent to 572 Ma) for the standard zircon used from a pegmatite from Sri Lanka (SL-13). The U/Pb data are presented in a concordia diagram (Wetherill 1956, 1963), where ellipses are plotted with 1σ error. All the data presented in the concordia were corrected for the common lead using the 208Pb correction method.

Approximately 0·1 g of whole rock, spiked with 150Nd-149Sm mixed tracer solution, was used for Sm-Nd and Sr analyses. Sample dissolution, chemical separation of Sr, Sm and Nd and isotope analyses was performed following methods described by Pin and Santos Zalduegui (1997). Procedure blanks for Sr and Nd are typically below 50 pg. One garnet fraction of sample MER105 was leached prior to dissolution following a two-step procedure involving 1 ml of cold concentrated HF for 1 h followed by 7 N HNO3 and 6 N HCl on a hot plate for 15 h. Sm-Nd and Sr isotope analyses were done at the University of the Basque Country using a Finnigan MAT262 on a static multicollection with a 143Nd/144Nd=0. 511844±13 (2σ, n =18) value for La Jolla standard and 87Sr/86Sr=0.71025±4 (2σ, n =33) for the Sr-standard NBS-987. Analytical uncertainty was estimated to be ± 0.2% on the 147Sm/144Nd ratio and 0.0016% on 143Nd/144Nd.

Hf isotopes were measured with a multiple-collector inductively coupled plasma mass spectrometer (MCICP-MS) at the Ecole Normale Supérieure de Lyon. Samples were processed using a new sample digestion and Lu-Hf separation scheme, involving fusion with a LiBO2 fluxing agent and one extraction chromatography column based on diamyl amylphoshonate (DAAP). Typical Hf and Lu blank/sample ratios were negligible. The 176Lu decay constant of Scherer et al. (2001) was used in the Lu-Hf age calculations with Isoplot.

Microprobe analysis: Mineral analyses were done using an automatic Cameca SX50 microprobe equipped with three spectrometers at the University of Oviedo (Spain). Operating parameters included a 10-s-counting time (peak), a c. 10 nA beam current and a 15 kV accelerating voltage. Calibration was against BRGM (French Geological Survey) standard minerals, and the ZAF correction procedure was used. Table 1 presents a selection of analytical data with additional details on structural formulas and Fe3+ estimates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandrés, A., Eguíluz, L., Pin, C. et al. The northern Ossa-Morena Cadomian batholith (Iberian Massif): magmatic arc origin and early evolution. Int J Earth Sci (Geol Rundsch) 93, 860–885 (2004). https://doi.org/10.1007/s00531-004-0423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0423-6

Keywords

Navigation