Skip to main content
Log in

New data on the Neoproterozoic – Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Teplá-Barrandian unit (TBU) of the Bohemian Massif was a part of the Avalonian-Cadomian belt at the northern margin of Gondwana during Neoproterozoic and Early Cambrian times. New detrital zircon ages and geochemical compositions of Late Neoproterozoic siliciclastic sediments confirm a deposition of the volcano-sedimentary successions of the TBU in a back-arc basin. A change in the geotectonic regime from convergence to transtension was completed by the time of the Precambrian-Cambrian boundary. The accumulation of around 2,500 m Lower Cambrian continental siliciclastics in a Basin-and-Range-type setting was accompanied by magmatism, which shows within-plate features in a few cases, but is predominantly derived from anatectic melts displaying the inherited island arc signature of their Cadomian source rocks. The geochemistry of clastic sediments suggests a deposition in a rift or strike-slip-related basin, respectively. A marine transgression during Middle Cambrian times indicates markedly thinned crust after the Cadomian orogeny. Upper Cambrian magmatism is represented by 1,500 m of subaerial andesites and rhyolites demonstrating several geochemical characteristics of an intra-plate setting. Zircons from a rhyolite give a U-Pb-SHRIMP age of 499±4 Ma. The Cambrian sedimentary and magmatic succession of the TBU records the beginning of an important rifting event at the northern margin of Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–D
Fig. 5
Fig. 6A–D
Fig. 7A–F
Fig. 8

Similar content being viewed by others

Notes

  1. In this study the stratigraphic timescale after Remane et al. (2000) is used.

References

  • Ahrendt H, Wemmer K, Neuroth H (1998) K-Ar—systematics on detrital white micas and fine mineral fractions from the Barrandian of the Prague syncline/Czech Republic. Acta Universitatis Carolinae, Geologica 42(2):204

    Google Scholar 

  • Auvray B, Charlot R, Vidal P (1980) Données nouvelles sur le Protérozoïque inférieur du domaine nord-armoricain (France): âge et signification. Can J Earth Sci 17:532–538

    CAS  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    CAS  Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sed Geol 45:97–113

    Article  CAS  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting of sedimentary basins. Contrib Mineral Petrol 92:181–193

    CAS  Google Scholar 

  • Chlupáč I (1993) Geology of the Barrandian—A field trip guide. Senckenberg-Buch 69, W. Kramer, Frankfurt, 163 pp

  • Chlupáč I (1995) Lower Cambrian arthropods from the Paseky shale (Barrandian area, Czech Republic). J Czech Geol Soc 40(4):9–36

    Google Scholar 

  • Chlupáč I, Havlíček V, Kříž J, Kukal Z., Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geol Surv, Prague, 183 pp

  • Cobbing J (2000) The geology and mapping of granite batholiths. Lecture Notes in Earth Sciences 96, Springer, Berlin Heidelberg New York, 121 pp

  • Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from Lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89(Suppl):B525–B534

    Google Scholar 

  • Coward MP (1986) Heterogeneous stretching, simple shear and basin development. Earth Planet Sci Lett 80:325–336

    Article  Google Scholar 

  • Dalziel IWD (1997) Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. GSA Bulletin 109(1):16–42

    Article  Google Scholar 

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rdsch 87:135–149

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—a correlation of U-Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Drost K, Linnemann U, Wemmer K, Budil P, Kraft P, Fatka O, Marek J (2003) Provenance and early diagenetic processes of the Ordovician Šárka Formation at Praha – Červený vrch Hill (Barrandian, Czech Republic). Bulletin Geosci 78:147–156

    Google Scholar 

  • Fatka O, Gabriel Z (1991) Microfossils from siliceous stromatolitic rocks of the Barrandian Proterozoic (Bohemian Massif). Čas Mineral Geol 36:143–148

    Google Scholar 

  • Fatka O, Frýda J, Kachlík V, Kraft P, Dolejš D (1998) Sedimentary and volcanic events in the Teplá-Barrandian crustal segment (Bohemia) as a response to dated intracrustal processes. Schr Staatl Mus Min Geol Dresden 9:136–137

    Google Scholar 

  • Fiala F (1977) The Upper Proterozoic volcanism of the Barrandian area and the problem of spilites. Sbor Geol Věd Geol 42:9–40

    Google Scholar 

  • Fiala F (1978) The TiO2-K2O-P2O5 diagram and tectonomagmatic relations of the volcanics of the Barrandian area. Věst Ústř Úst Geol 53:333–346

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak U, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt. Geol Soc Spec Publ 179:35–61

    Google Scholar 

  • Gans PB, Mahood GA, Schermer E (1989) Synextensional magmatism in the Basin and Range Province: A case study from the eastern Great Basin. Geol Soc Am Spec Pap 233:1–53

    Google Scholar 

  • Havlíček V (1971) Stratigraphy of the Cambrian of Central Bohemia. Sbor Geol Věd 20 (rada G):7–50

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    CAS  Google Scholar 

  • Irvine TN, Stoeser DB (1978) Structure of the Skaergaard trough bands. Ann Rep Director Geophys Lab, Carnegie Inst Washington, Year Book 77, pp 725–732

  • Jensen LS (1976) A new cation plot for classifying subalkalic volcanic rocks. Ontario Department of Mines, Misc Pap 66, 22 pp

  • Johnsson MJ (1993) The system controlling the composition of clastic sediments. In: Johnsson MJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geol Soc Am Spec Pap 284:1–20

    Google Scholar 

  • Kemnitz H, Romer RL, Oncken O (2002) Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci 91:246–259

    Article  Google Scholar 

  • Kinny PD (1986) 3820 Ma zircons from a tonalitic Amitsoq gneiss in the Godthab district of southern West Greenland. Earth Planet Sci Lett 79:337–347

    Article  CAS  Google Scholar 

  • Konzalová M (1981) Some late Precambrian microfossils from the Bohemian Massif and their correlation. Precambrian Res 15:4–62

    Google Scholar 

  • Kříbek B, Pouba Z, Skoček V, Waldhausrová J (2000) Neoproterozoic of the Teplá-Barrandian Unit as a part of the Cadomian orogenic belt: A review and correlation aspects. Bulletin Czech Geoll Surv 75(3):175–196

    Google Scholar 

  • Krs M, Pruner P, Man O (2001) Tectonic and paleogeographic interpretation of the paleomagnetism of Variscan and pre-Variscan formations of the Bohemian Massif, with special reference to the Barrandian terrane. Tectonophysics 332:93–114

    Article  Google Scholar 

  • Kukal Z (1971) Sedimentology of Cambrian deposits of the Barrandian area (Central Bohemia). Sbor Geol Věd 20(rada G):53–100

    Google Scholar 

  • LeMaître RW (1988) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, 129 pp

  • Lonsdale P (1989) Geology and tectonic history of the Gulf of California. In: Winterer EL, Hussong DM, Decker RW (eds) The Eastern Pacific ocean and Hawaii, The Geology of North America. Geol Soc Am, Boulder, Colorado, pp 499–521

  • Ludwig KR (1998) On the treatment of concordant uranium-lead ages. Geochimica et Cosmochimica Acta 62:665–76

    Article  CAS  Google Scholar 

  • Matte P (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–74

    Article  Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing. Tectonophysics 177:151–70

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Rev Min 21:169–200

    CAS  Google Scholar 

  • Murphy JB, Nance RD, Keppie JD, Dostal J, Cousens BL (1995) Odyssey of West Avalonia: Isotopic constraints for Late Proterozoic III - Early Silurian paleogeography. In: Hibbard JP, van Staal CR, Cawood PA (eds) Current Perspectives in the Appalachian-Caledonian Orogen. Geol Ass Can Spec Pap 41, pp 227–238

  • Murphy JB, Keppie JD, Dostal J, Nance RD (1999) Neoproterozoic—early Paleozoic evolution of Avalonia. In: Ramos VA, Keppie JD (eds) Laurentia-Gondwana Connections before Pangea. Geol Soc Am Spec Pap 336:253–266

    Google Scholar 

  • Nance RD, Murphy JB (1994) Contrasting basement isotopic signature and the palinspastic restoration of peripheral orogens: Example from the Neoproterozoic Avalonian-Cadomian belt. Geology 22:617–620

    Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78

    Article  Google Scholar 

  • Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31

    Article  Google Scholar 

  • Nelson DR (1997) Compilation of SHRIMP U-Pb zircon geochronology data, 1996. Geol Surv Western Australia Records 1997(2):189

    Google Scholar 

  • Pacltová B (1990) Late Proterozoic organic remains from the Mítov locality. J Palynology 91:261–276

    Google Scholar 

  • Patočka F, Vlašímský P, Blechová K (1993) Geochemistry of early Paleozoic volcanics of the Barrandian basin (Bohemian Massif, Czech Republic): Implications for paleotectonic reconstructions. Jb Geol B-A 136(4):873–896

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    CAS  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 24(4):956–983

    Google Scholar 

  • Pelc Z, Waldhausrová J (1994) Geochemical characteristics of volcanics of the Barrandian Upper Proterozoic in the Chudenice-Nepomuk region (SW Bohemia). Sbor Geol Věd Geol 46:5–21 (in Czech)

    Google Scholar 

  • Perroud H, Van der Voo R, Bonhommet N (1984) Paleozoic evolution of the Armorica plate on the basis of paleomagnetic data. Geology 12:579–582

    Google Scholar 

  • Pin C (1990) Variscan oceans: Ages, origins and geodynamic implications inferred from geochemical and radiometric data. Tectonophysics 177:215–27

    Article  Google Scholar 

  • Pitcher WS (1997) The nature and origin of granite. 2nd Edition, Chapman and Hall, London, 387 pp

  • Pupin JC (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    CAS  Google Scholar 

  • Remane J, Faure-Muret A, Odin GS (2000) International Stratigraphic Chart. In: Remane J, Cita MB, Dercourt J, Bouysse P, Repetto FL, Faure-Muret A (eds) Explanatory note on the International Stratigraphic Chart. IUGS, Division of Earth Sciences, UNESCO, Paris

  • Sánchez-García T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian-Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics 365:233–255

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  CAS  Google Scholar 

  • Štorch P, Fatka O, Kraft P (1993) Lower Paleozoic of the Barrandian area (Czech Republic) - a review. Coloquios de Paleontología 45:163–191

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: AD Saunders, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Tait JA, Bachtadse V, Franke W, Soffel HC (1997) Geodynamic evolution of the European Variscan fold belt: paleomagnetic and geological constraints. Geol Rdsch 86:585–598

    Article  Google Scholar 

  • Torsvik TH, Smethurst MA, Meert JG, Van der Voo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—A tale of Baltica and Laurentia. Earth Sci Rev 40:229–58

    Article  Google Scholar 

  • Van der Voo R, Briden JC, Duff A (1980) Late Precambrian and Palaeozoic palaeomagnetism of the Atlantic bordering continents. In: Cogné J, Slansky M (eds) Géologie de l’Europe. Mém BRGM 108, pp 203–212

  • Vejnar Z (1966) The petrogenetic interpretation of kyanite, silimanite and andalusite in the Southwestern Bohemian crystalline complexes. N Jahrb Mineral Abh 104:172–189

    CAS  Google Scholar 

  • Vidal P, Auvray B, Charlot R, Fediuk F, Hameurt J, Waldhausrová J (1975) Radiometric age of volcanics of the Cambrian “Křívoklat-Rokycany” complex (Bohemian Massif). Geol Rdsch 64(2):563–570

    CAS  Google Scholar 

  • Waldhausrová J (1971) The chemistry of the Cambrian volcanics in the Barrandian area. Krystalinikum 8:45–75

    Google Scholar 

  • Waldhausrová J (1997) Geochemistry of volcanics (metavolcanics) in the western part of the TBU Precambrian and their original geotectonic setting. In: S Vrána, V Štědrá (eds) Geological model of western Bohemia related to the KTB borehole in Germany. Sbor Geol Věd Geol 47:85–90

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    CAS  Google Scholar 

  • Williams IS, Compston W, Black LP, Ireland TR, Foster JJ (1984) Unsupported radiogenic Pb in zircon: a case for anomalously high Pb-Pb, U-Pb and Th-Pb ages. Contrib Mineral Petrol 88:322–327

    CAS  Google Scholar 

  • Zeh A, Brätz H, Millar IL, Williams IS (2001) A combined zircon SHRIMP and Sm-Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: evidence for northern Gondwanan and Grenvillian provenance. J Geol Soc 158:983–994

    Google Scholar 

  • Zulauf G (1997) Von der Anchizone bis zur Eklogitfazies: Angekippte Krustenprofile als Folge der cadomischen und variscischen Orogenese im Teplá-Barrandium (Böhmische Masse). Geotekt Forsch 89:1–302

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997a) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rdsch 86:571–587

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997b) Lower Carboniferous lift tectonics in the Bohemian Massif: a special kind of gravitational collapse in thickened orogenic crust. Terra Nostra 97(5):216–8

    Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z dt geol Ges 150(4):627–639

    Google Scholar 

Download references

Acknowledgements

This study was supported by the “Deutsche Forschungsgemeinschaft” (grants Li 521/14–1 and Li 521/16–1). Allan Kennedy (Curtin University) and Ian Fletcher (UWA) are thanked very much for their assistance during SHRIMP-work in Perth. Special thanks to the team of the Centre for Global Metallogeny for their help during our stay in Perth. The Perth SHRIMP is operated by a university-government consortium with support from the Australian Research Council. This is a contribution to IGCP 453 and IGCP 497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Drost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drost, K., Linnemann, U., McNaughton, N. et al. New data on the Neoproterozoic – Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci (Geol Rundsch) 93, 742–757 (2004). https://doi.org/10.1007/s00531-004-0416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0416-5

Keywords

Navigation