Skip to main content

Advertisement

Log in

Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Oxygen isotope ratios of well-preserved brachiopod calcite and conodont apatite were used to reconstruct the palaeotemperature history of the Middle and Late Devonian. By assuming an oxygen isotopic composition of −1‰ V-SMOW for Devonian seawater, the oxygen isotope values of Eifelian and early Givetian brachiopods and conodonts give average palaeotemperatures ranging from 22 to 25 °C. Late Givetian and Frasnian palaeotemperatures calculated from δ18O values of conodont apatite are close to 25 °C in the early Frasnian and increase to 32 °C in the latest Frasnian and early Famennian. Oxygen isotope ratios of late Givetian and Frasnian brachiopods are significantly lower than equilibrium values calculated from conodont apatite δ18O values and give unrealistically warm temperatures ranging from 30 to 40 °C. Diagenetic recrystallization of shell calcite, different habitats of conodonts and brachiopods, as well as non-equilibrium fractionation processes during the precipitation of brachiopod calcite cannot explain the 18O depletion of brachiopod calcite. Moreover, the 18O depletion of brachiopod calcite with respect to equilibrium δ18O values calculated from conodont apatite is too large to be explained by a change in seawater pH that might have influenced the oxygen isotopic composition of brachiopod calcite. The realistic palaeotemperatures derived from δ18O apatite may suggest that biogenic apatite records the oxygen isotopic composition and palaeotemperature of Palaeozoic oceans more faithfully than brachiopod calcite, and do not support the hypothesis that the 18O/16O ratio of Devonian seawater was significantly different from that of the modern ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auclair AC, Joachimski MM, Lécuyer C (2003) Deciphering kinetic, metabolic and environmental controls on stable isotope fractionations between seawater and the shell of Terebratalia transversa (Brachiopoda). Chem Geol 202:59–78

    Article  CAS  Google Scholar 

  • Bates NR, Brand U (1991) Environmental and physiological influences on isotopic and elemental compositions of brachiopod shell calcite: implications for the isotopic evolution of Palaeozoic oceans. Chem Geol 94:67–78

    CAS  Google Scholar 

  • Brand U (1989) Global climatic changes during the Devonian-Mississippian: stable isotope biogeochemistry of brachiopods. Palaeogeogr Palaeoclimatol Palaeoecol 75:311–329

    Article  Google Scholar 

  • Brand U, Logan A, Hiller N, Richardson J (2003) Geochemistry of modern brachiopods: applications and implications for oceanography and palaeoceanography. Chem Geol 198:305–334

    Article  CAS  Google Scholar 

  • Brock TD (1985) Life at high temperatures. Science 230:132–138

    CAS  Google Scholar 

  • Bruckschen P, Oesmann S, Veizer J (1999) Isotope stratigraphy of the European Carboniferous: proxy signal for ocean chemistry, climate and tectonics. Chem Geol 161:243–264

    Article  Google Scholar 

  • Bryant JD, Koch PL, Froelich PN, Showers WJ, Genna BJ (1996) Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochim Cosmochim Acta 60:5145–5148

    Article  CAS  Google Scholar 

  • Carpenter SJ, Lohmann KC (1995) δ18O and δ13C values of modern brachiopod shells. Geochim Cosmochim Acta 59:3749–3764

    Article  CAS  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of isotope reference samples. Nature 302:236

    CAS  Google Scholar 

  • Copper P (2002) Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr Palaeoclimatol Palaeoecol 181:27–65

    Article  Google Scholar 

  • Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400

    CAS  Google Scholar 

  • Day J (1994) Late Middle and Early Upper Devonian brachiopod faunas of southeastern Iowa and northwestern Illinois. In: Bunker BJ (ed) Palaeozoic stratigraphy of the Quad-Cities Region East-Central Iowa, Northwestern Illinois. Geol Soc Iowa Guidebook 59:65–83

    Google Scholar 

  • Day J (1996) Faunal signatures of Middle-Upper Devonian depositional sequences and sea level fluctuations in the Iowa Basin: US mid-continent. Geol Soc Am Spec Pap 306:277–300

    Google Scholar 

  • Day J (1997) Phylogeny and biogeography of Tecnocyrtina (Brachiopoda-Spiriferinida) in the Devonian (Givetian-Frasnian) of North America. Geol Soc Am Spec Pap 321:245–261

    Google Scholar 

  • Day J, Uyeno T, Norris W, Witzke BJ, Bunker BJ (1996) Middle-Upper Devonian relative sea-level histories of central and western North American interior basins. Geol Soc Am Spec Pap 306:259–275

    Google Scholar 

  • Donoghue PCJ, Forey PL, Aldridge RJ (2000) Conodont affinity and chordate phylogeny. Biol Rev 75:191–251

    Google Scholar 

  • Gao G (1993) The temperature and oxygen-isotopic composition of early Devonian oceans. Nature 361:712–714

    Article  CAS  Google Scholar 

  • Geitgey JE, Carr TR (1987) Temperature as a factor affecting conodont diversity and distribution. In: Austin RL (ed) Conodonts: investigative techniques and applications. Elishorwood, Chichester, pp 242–255

  • Iacumin P, Bocherens H, Mariotti A, Longinelli A (1996) Oxygen isotope analysis of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142:1–6

    Google Scholar 

  • Joachimski MM, Buggisch W (2002) Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian (F-F) mass extinction. Geology 30:711–714

    Article  CAS  Google Scholar 

  • Joachimski MM, Pancost RD, Freeman KH, Ostertag-Henning C, Buggisch W (2002) Carbon isotope geochemistry of the Frasnian-Famennian transition. Palaeogeogr Palaeoclimatol Palaeoecol 181:91–109

    Article  Google Scholar 

  • Johnson JG (1970) Taghanic onlap and the end of North American provinciality. Geol Soc Am Bull 81:2077–2106

    Google Scholar 

  • Johnson JG, Klapper G, Sandberg CA (1985) Devonian eustatic fluctuations in Euramerica. Geol Soc Am Bull 96:567–587

    Google Scholar 

  • Klapper G (1989) The Montagne Noire Frasnian (Upper Devonian) conodont succession. In: McMillan NJ, Embry AF, Glass DJ (eds) Devonian of the world. Can Soc Petrol Geol Mem 14:3:449–468

  • Klapper G, Becker RT (1998) Comparison of Frasnian (Upper Devonian) conodont zonations. Bull Della Soc Palaeontol Ital 37(2–3):339–348

    Google Scholar 

  • Klapper G, Johnson JG (1990) Revision of Middle Devonian conodont zones. J Palaeontol 64:902–941

    Google Scholar 

  • Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet Sci Lett 64:398–404

    Article  CAS  Google Scholar 

  • Land LS (1995) Oxygen and carbon isotopic composition of Ordovician brachiopods: implication for coeval sea water: discussion. Geochim Cosmochim Acta 40:2843–2844

    Article  Google Scholar 

  • Lécuyer C, Allemand PA (1999) Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the δ18O of marine sediments. Geochim Cosmochim Acta 63:351–361

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, Emig CC (1996) Determination of oxygen isotope fractionation between water and phosphate from living linguilides: potential application to palaeoenvironmental studies. Palaeogeogr Palaeoclimatol Palaeoecol 126:101–108

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, O’Neil JR, Capetta H, Martineau F (1993) Thermal excursions in the ocean at the Cretaceous-Tertiary boundary (northern Morocco): δ18O record of phosphatic fish debris. Palaeogeogr Palaeoclimatol Palaeoecol 105:235–243

    Article  Google Scholar 

  • Lee X, Wan G (2000) No vital effect on δ18O and δ13C values of fossil brachiopod shells, Middle Devonian of China. Geochim Cosmochim Acta 64:2649–2664

    Article  CAS  Google Scholar 

  • Léthiers F, Raymond D (1991) Les crises du Dévonien supérieur par l’étude des faunes d’ostracodes dans leur cadres paléogeographiques. Palaeogeogr Palaeoclimatol Palaeoecol 88:133–146

    Article  Google Scholar 

  • Luz B, Kolodny Y, Kovach J (1984) Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth Planet Sci Lett 69:255–262

    Article  CAS  Google Scholar 

  • McConnaughey T (1989) 13C and 18O disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    Article  CAS  Google Scholar 

  • McCrea JM (1950) On the isotopic geochemistry of carbonates and a palaeotemperature scale. J Chem Phys 18:849–857

    CAS  Google Scholar 

  • Middleton PD, Marshall JD, Brenchley PJ (1991) Evidence for isotopic changes associated with the Late Ordovician glaciation from brachiopods and marine cements from central Sweden. In: Barnes CR, Williams SH (eds) Advances in Ordovician geology. Geol Surv Can Pap 90–9, Ottawa, pp 313–323

  • Mii HS, Grossman EL, Yancey TE (1999) Carboniferous isotope stratigraphies of North America: implications for Carboniferous palaeoceanography and Mississippian glaciation. Geol Soc Am Bull 111:960–973

    Article  CAS  Google Scholar 

  • Muehlenbachs K (1998) The oxygen isotopic composition of the oceans, sediments and the sea floor. Chem Geol 145:263–273

    Article  CAS  Google Scholar 

  • O’Neil JR, Clayton RN, Meyeda TK (1969) Oxygen isotope fractionation in divalent metal carbonate. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • O’Neil JR, Roe JL, Reinhardt E, Blake RE (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr J Earth Sci 43:203–212

    Google Scholar 

  • Picard S, Garcia JP, Lécuyer C, Sheppard SMF, Cappeta H, Emig CC (1998) δ18O values of coexisting brachiopods and fish: temperature differences and estimates of palaeo-water depths. Geology 26:975–978

    Article  CAS  Google Scholar 

  • Pietzner H, Vahl J, Werner H, Ziegler W (1968) Zur chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica Abt A 128:115–152

    Google Scholar 

  • Popp BN, Anderson TF, Sandberg PA (1986) Brachiopods as indicators of original isotopic compositions in some Palaeozoic limestones. Geol Soc Am Bull 97:1262–1269

    CAS  Google Scholar 

  • Quade J, Cerling TE, Barry JC, Morgan ME, Pilbeam DR, Chivas AR, Lee-Thorp JA, van der Merve NJ, (1992) A 16-Ma record of palaeodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem Geol 94:183–192

    CAS  Google Scholar 

  • Sanson IJ, Smith MP, Amstrong HA, Smith MM (1992) Presence of the earliest vertebrate hard tissues in conodonts. Science 256:1308–1311

    PubMed  Google Scholar 

  • Savin SM (1977) The history of the earth’s surface temperature during the past 100 million years. Ann Rev Earth Planet Sci 5:319–355

    Article  CAS  Google Scholar 

  • Scotese CR (2001) Atlas of earth history, vol 1, palaeogeography. PALEOMAP Project, Arlington, Texas, 52 pp

  • Sharp ZD, Atudorei V, Furrer H (2000) The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. Am J Sci 300:222–237

    CAS  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on Foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Article  CAS  Google Scholar 

  • Streel M, Caputo MV, Loboziak S, Melo JHG (2000) Late Frasnian-Famennian climates based on palynomorph analyses and the question of the Late Devonian glaciations. Earth Sci Rev 52:121–173

    Article  Google Scholar 

  • Sweet WC (1988) The conodonta: morphology, taxonomy, palaeoecology and evolutionary history of a long-extinct animal phyllum. Oxford Mon Geol Geophys 10:1–212

    Google Scholar 

  • Usdowski E, Michaelis J, Böttcher M, Hoefs J (1991) Factors for the oxygen isotope equilibrium fractionation between aqueous and gaseous CO2, carbonic acid, bicarbonate, carbonate, and water (19 °C). Z Phys Chem 170:237–249

    CAS  Google Scholar 

  • Van Geldern R (2004) Stabile Isotopenuntersuchungen an devonischen Brachiopoden. Unpublished PhD Thesis, University of Erlangen-Nürnberg, pp 210

  • Veizer J (1995) Oxygen and carbon isotopic composition of Ordovician brachiopods: implication for coeval sea water: reply. Geochim Cosmochim Acta 59:2845–2846

    Article  CAS  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  CAS  Google Scholar 

  • Veizer J, Fritz P, Jones B (1986) Geochemistry of brachiopods: oxygen and carbon isotopic records of Palaeozoic oceans. Geochim Cosmochim Acta 50:1679–1696

    Article  CAS  Google Scholar 

  • Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336

    Article  CAS  Google Scholar 

  • Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy. pp 225–250

  • Wallmann K (2001) The geological water cycle and the evolution of marine δ18O values. Geochim Cosmochim Acta 65:2469–2485

    Article  CAS  Google Scholar 

  • Wenzel B, Joachimski MM (1996) Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 122:143–166

    Article  Google Scholar 

  • Wenzel B, Lécuyer C, Joachimski MM (2000) Comparing oxygen isotope records of Silurian calcite and phosphate - δ18O compositions of brachiopods and conodonts. Geochim Cosmochim Acta 64:1859–1872

    Article  CAS  Google Scholar 

  • Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on Foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007

    Article  CAS  Google Scholar 

  • Ziegler W, Sandberg CA (1990) The Late Devonian standard conodont zonation. Courier Forschungsinstitut Seckenberg 121:1–115

    Google Scholar 

Download references

Acknowledgements

We thank B. Wenzel and D. Lutz for help with conodont apatite δ18O analyses. This study was financially supported by the Deutsche Forschungsgemeinschaft (Projects Bu 312/31 and Jo 312/4). Brachiopods were provided by F. Alvarez, E.A. Yolkin, X. Ma, and U. Jansen. Funding for parts of Day’s travel for field work with M. M. Joachimski and R. van Geldern in Iowa in 1999 was provided by an Illinois State University – University research grant, and by the Foundation for Research and Exploration of the National Geographic Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Joachimski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joachimski, M.M., van Geldern, R., Breisig, S. et al. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. Int J Earth Sci (Geol Rundsch) 93, 542–553 (2004). https://doi.org/10.1007/s00531-004-0405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0405-8

Keywords

Navigation