Skip to main content
Log in

New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Direct observation and extensive sampling in ancient margins exposed in the Alps, combined with drill-hole and geophysical data from the present-day Iberia margin, result in new concepts for the strain evolution and near-surface response to lithospheric rupturing at magma-poor rifted margins. This paper reviews data and tectonic concepts derived from these two margins and proposes that extension, leading to thinning and final rupturing of the continental lithosphere, is accommodated by three fault systems, each of them characterized by a specific temporal and spatial evolution during rifting of the margin, by its fault geometry, and its surface response. The data presented in this paper suggest that margin architecture and distribution of rift structures within the future margin are controlled first by inherited heterogeneities within the lithosphere leading to a contrasting behaviour of the future distal and proximal margins during an initial stage of rifting. The place of final break-up appears to be determined early in the evolution of the margin and occurs where the crust has been thinned during a first stage to less than 10 kilometres. During final break-up, the rheology of the extending lithosphere is controlled by the thermal structure related to the rise of the asthenosphere and by serpentinization and magmatic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c.
Fig. 3a–f.
Fig. 4
Fig. 5a – b.
Fig. 6a–d Fig. 7
Fig. 8a–b.
Fig. 9
Fig. 10a – g.
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15a–b.

Similar content being viewed by others

References

  • Abe N (2001) Petrochemistry of serpentinized peridotite from the Iberia Abyssal Plain (ODP Leg 173): its character intermediate between sub-oceanic and sub-continental upper mantle. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ 187, pp 143–159

  • Abers GA, Mutter CZ, Fang J (1997) Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark-D’Entrecasteaux rift system, Papua New Guinea. J Geoph Res 102:15301–15317

    Article  Google Scholar 

  • Abers GA (2001) Evidence for seismogenic normal faults at shallow dips in continental rifts. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ 187, pp 305–318

  • Anderson EM (1951) The Dynamics of Faulting. 2nd Edition. Oliver and Boyd, Edinburgh

  • Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25

    Google Scholar 

  • Bally AW, Bernoulli D, Davis GA, Montadert L (1981) Listric normal faults. Oceanol Acta Paris 26e Congr Géol Int Colloq Géol des Marges Continentales: 87–101

  • Bernoulli D (1964) Zur Geologie des Monte Generoso. Beitr geol Karte Schweiz 118, pp 1–134

  • Bernoulli D, Jenkyns HC (1974) Alpine, Mediterranean and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In: Dott Jr RH. Shaver, RH (eds) Modern and ancient geosynclinal sedimentation. Spec Publ Soc Econ Paleontol Mineral 19, pp 129–160

  • Bernoulli D, Weissert H (1985) Sedimentary fabrics in Alpine ophicalcites, South Pennine Arosa zone, Switzerland. Geology 13:755–758

    Google Scholar 

  • Bernoulli D, Bertotti G, Froitzheim N (1990) Mesozoic faults and associated sediments in the Austroalpine-South Alpine continental margin. Mem Soc Geol Ital 45:25–38

    Google Scholar 

  • Berra F (1995) Stratigraphic evolution of a Norian intraplatform basin recorded in the Quattervals Nappe (Austroalpine, Northern Italy) and paleogeographic implications. Eclogae Geol Helv 88:501–528

    Google Scholar 

  • Bertotti G (1991) Early Mesozoic extension and Alpine shortening in the western southern Alps: The geology of the area between Lugano and Menaggio (Lombardy, northern Italy). Mem Sci Geol Padova 43, pp 17–123

    Google Scholar 

  • Bertotti G, Ter Voorde M (1994) Thermal effects of normal faulting during rifted basin formation, 2. The Lugano-Val Grande normal fault and the role of pre-existing thermal anomalies. Tectonophysics 240:145–157

    Article  Google Scholar 

  • Bertotti G, Picotti V, Bernoulli D, Castellarin A (1993) From rifting to drifting: Tectonic evolution of the south-Alpine upper crust from the Triassic to the Early Cretaceous. Sediment Geol 86:53–76

    Article  Google Scholar 

  • Bertotti G, Seward D, Wijbrans J, Ter Voorde M, Hurford AJ (1999) Crustal thermal regime prior to, during and after rifting: a geochronological and modeling study of the Mesozoic South Alpine rifted margin. Tectonics 18:185–200

    Article  Google Scholar 

  • Beslier MO, Bitri A, Boillot G (1995) Structure de la transition continent-océan d’une marge passive: sismique réflexion multitrace dans la Plaine Abyssale Ibérique (Portugal). C R Acad Sci Ser 2 320:969–976

    Google Scholar 

  • Beslier MO, Cornen G, Girardeau J (1996) Tectono-metamorphic evolution of peridotites from the ocean/continent transition of the Iberia Abyssal Plain margin. In: Whitmarsh RB, Sawyer DS, Klaus A., Masson DG (eds) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, Texas 149, pp 397–412

  • Bill M, Bussy F, Cosca M, Masson H, Hunziker J (1997) High-precision U-Pb and 40Ar/39Ar dating of an Alpine ophiolite (Gets nappe, French Alps). Eclogae Geol Helv 90:43–54

    CAS  Google Scholar 

  • Bill M, O’Dogherty L, Guex J, Baumgartner PO, Masson H (2001) Radiolarite ages in Alpine-Mediterranean ophiolites: Constraints on the oeanic spreading and the Tethys-Atlantic connection. Geol Soc Amer Bull 113: 129–143

    Article  Google Scholar 

  • Boillot G, Froitzheim N (2001) Non-volcanic rifted margins, continental break-up and the onset of sea-floor spreading: some outstanding questions. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ 187, pp 9–30

  • Boillot G, Grimaud S, Mauffret A, Mougenot D, Kornprobst J, Mergoil-Daniel J, Torrent G (1980) Ocean-continent boundary off the Iberian margin: A serpentinite diapir west of the Galicia Bank. Earth Planet Sci Lett 48:23–34

    Article  CAS  Google Scholar 

  • Boillot G, et al (23 authors) (1987) Tectonic denudation of the upper mantle along passive margins: A model based on drilling results (ODP Leg 103, western Galicia margin, Spain). Tectonophysics 132:335–342

    Article  Google Scholar 

  • Bosence DWJ (1998) Stratigraphic and sedimentological models of rift basins. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 9–25

  • Buck WR (1988) Flexural rotation of normal faults. Tectonics 7:959–973

    Google Scholar 

  • Chevalier F (2002) Vitesse et cyclicité de fonctionnement des failles normales de rift. Implication sur le remplissage stratigraphique des bassins et sur les modalités d’extension d’une marge passive fossile. Application au demi-graben liasique de Bourg-d’Oisans (Alpes occidentales, France). Unpublished,Thèse Université de Bourgogne, pp 1–396

  • Chian D, Louden KE, Minshull TA, Whitmarsh RB (1999) Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: Ocean Drilling Program (Legs 149 and 173) transect. J Geophys Res 104:7443–7462

    Article  Google Scholar 

  • Claudel ME, Dumont T (1999) A record of multistage continental break-up on the Briançonnais marginal plateau (Western Alps): Early and Middle-Late Jurassic rifting. Eclogae Geol Helv 92:45–61

    Google Scholar 

  • Conti P, Manatschal G, Pfister M (1994) Synrift sedimentation, Jurassic and Alpine tectonics in the central Ortler Nappe (eastern Alps, Italy). Eclogae Geol Helv 87:63–90

    Google Scholar 

  • Costa S, Caby R (2001) Evolution of the Ligurian Tethys in the Western Alps: Sm/Nd and U/Pb geochronology and rare-earth element geochemistry of the Montgenèvre ophiolite (France). Chemical Geology 175:449–466

    Article  CAS  Google Scholar 

  • Dal Piaz GV (1995) Plate tectonics and mountain building: the Alps. Historical review and personal comments. In: Ranalli G (ed) Proceedings of the VIII Summer School Earth and Planetary Sciences. Tipografia Senese, pp. 171–251

  • de Charpal O, Guennoc P, Montadert L, Roberts DG (1978) Rifting, crustal attenuation and subsidence in the Bay of Biscay. Nature 275:706–711

    Google Scholar 

  • Desmurs L (2001) Mantle evolution and magmatism in an evolving ocean-continent transition: The Platta nappe, eastern Switzerland. Unpublished Ph D thesis, ETH Zurich, pp 1–143

  • Desmurs L, Manatschal G, Bernoulli D (2001) The Steinmann trinity revisited: mantle exhumation and magmatism along an ocean-continent transition: the Platta nappe, eastern Switzerland. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ, 187, pp 235–266

  • Desmurs L, Müntener O, Manatschal G (2002) Onset of magmatic accretion within a magma-poor passive margin: A case study from the Err-Platta ocean-continent transition, Eastern Switzerland. Contributions to Mineralogy and Petrology 144:365–382

    CAS  Google Scholar 

  • Dietrich V (1970) Die Stratigraphie der Platta-Decke, Eclogae Geol Helv 63:631–671

  • Driscoll NW, Hogg JR, Christie-Blick N, Karner GD (1995) Extensional tectonics in the Jeanne d’Arc Basin, offshore Newfoundland: implications for the timing of break-up between Grand Banks and Iberia. In: Scrutton RA, Stoker S, Shimmield GB, Tudhope AW (eds) The tectonics, sedimentation and palaeoceanography of the North Atlantic region. Geol Soc (London), Spec Publ 90, pp 1–28

  • Eberli GP (1988) The evolution of the southern continental margin of the Jurassic Tethys Ocean as recorded in the Allgäu Formation of the Austroalpine nappes of Graubünden (Switzerland). Eclogae Geol Helv 81:175–214

    Google Scholar 

  • Féraud G, Beslier MO, Cornen G (1996) 40Ar-39Ar dating of gabbros from the ocean/continent transition of the western Iberia margin: preliminary results. In: Whitmarsh RB, Sawyer DS, Klaus A., Masson DG (eds) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, Texas 149, pp 489–495

  • Ferreiro-Mählmann R (2001) Correlation of very low-grade data to calibrate a thermal maturity model in a nappe tectonic setting, a case study from the Alps. Tectonophysics 334:1-33

    Article  Google Scholar 

  • Finger W, Mercolli I, Kündig R, Stäubli A, De Capitani C, Nievergelt P, Peters T, Trommsdorff V (1982) Bericht über die gemeinsame Exkursion der Schweizerischen Geologischen Gesellschaft und der Schweizerischen Mineralogischen und Petrographischen Gesellschaft ins Oberengadin vom 21. bis 24. September 1981. Eclogae Geol Helv 75:199–222

    Google Scholar 

  • Florineth D, Froitzheim N (1994) Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubünden, Switzerland): evidence for Early Cretaceous opening of the Valais ocean. Schweiz Mineral Petrogr Mitt 74:437–448

    Google Scholar 

  • Froitzheim N (1988) Synsedimentary and synorogenic normal faults within a thrust sheet of the eastern Alps (Ortler zone, Graubünden, Switzerland). Eclogae Geol Helv 81:593–610

    Google Scholar 

  • Froitzheim N, Eberli GP (1990) Extensional detachment faulting in the evolution of a Tethys passive continental margin, eastern Alps, Switzerland. Geol Soc Am Bull 102:1297–1308

    Article  Google Scholar 

  • Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108:1120–1133

    Article  Google Scholar 

  • Froitzheim N, Rubatto D (1998) Continental breakup by detachment faulting: field evidence and geochronological constraints (Tasna nappe, Switzerland). Terra Nova 10:171–176

    Article  Google Scholar 

  • Froitzheim N, Schmid SM, Conti P (1994) Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden. Eclogae Geol Helv 87:559–612

    Google Scholar 

  • Frueh-Green GL, Boschi C, Kelley DS, Connolly JA, Schrenk MO (2002) The Role of Serpentinization in Metasomatism, Carbonate Precipitation and Microbial Activity: Stable Isotope Constraints from the Lost City Vent Field (MAR 30°N). Eos Trans AGU, 83(47) Fall Meet Suppl Abstract V72A-1289

  • Funck T, Hopper JR, Larsen HC, Louden KE, Tucholke BE, Holbrook WS (2003) Crustal structure of the ocean-continent transition at Flemish Cap: Seismic refraction results. J Geophys Res 108:2531, doi: 10.1029/2003JB002434

  • Gradstein FM, Ogg JG (1996) A Phanerozoic time scale. Episodes 19:3-5

    Google Scholar 

  • Handy MR (1987) The structure, age and kinematics of the Pogallo fault zone; Southern Alps, northwestern Italy. Eclogae Geol Helv 80:593–632

    Google Scholar 

  • Handy MR, Zingg A (1991) The tectonic and rheological evolution of an attenuated cross section of the continental crust: Ivrea crustal section, southern Alps, northwestern Italy and southern Switzerland. Geol Soc Am Bull 103:236–253

    Article  Google Scholar 

  • Harry DL, Sawyer DS (1992) A dynamic model of extension in the Baltimore Canyon Trough region. Tectonics 11:420–436

    Google Scholar 

  • Hébert R, Gueddari K, Laflèche MR, Beslier MO, Gardien V (2001) Petrology and geochemistry of exhumed peridotites and gabbros at non-volcanic margins: ODP Leg 173, West Iberia ocean-continent transition zone. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ, 187, pp 161–190

  • Hermann J, Müntener O, Trommsdorff V, Hansmann W, Piccardo GB (1997) Fossil crust-to-mantle transition, Val Malenco (Italian Alps). J Geophys Res 102:20123–20132

    CAS  Google Scholar 

  • Hölker A, Holliger K, Manatschal G, Anselmetti F (2002a) Seismic structure of the Iberian and Tethyan distal continental margins based on geological and petrophysical data. Tectonophysics 350:127–156

    Article  Google Scholar 

  • Hölker A, Manatschal G, Holliger K, Bernoulli D (2002b) Seismic structure and response of ocean-continent transition zones: A comparison of an ancient Tethyan and a present-day Iberian site. Marine Geophys Res 23 : 319–334

    Google Scholar 

  • Hölker A, Manatschal G, Holliger K, Bernoulli D (2003) Tectonic nature and seismic response of top-basement faults in magma-poor rifted margins. Tectonics 22:1035, doi:10.1029/2001TC001347

  • Hopper JR, Funck T, Tucholke B, Larsen HC, Holbrook WS, Louden KE, Shillington D, Lau H (2004) Continental breakup and the onset of ultraslow seafloor spreading off Flemish Cap on the Newfoundland rifted margin. Geology 32:93–96

    Article  CAS  Google Scholar 

  • Jansa LF, Wade JA (1975) Geology of the continental margins off Nova Scotia and Newfoundland. In: Linden van der WJM, Wade JA (eds) Offshore Geology of Eastern Canada; 2, Regional Geology. Geol Surv Canada Paper, pp 51–105

  • Keen CE, Boutilier R, De Voogd B, Mudford B, Enachescu ME (1987) Crustal geometry and extensional models for the Grand Banks, eastern Canada: Constraints from deep seismic reflection data. In: Beaumont C, Tankard AJ (eds) Sedimentary Basins and Basin-Forming Mechanisms. Mem Can Soc Petr Geol 12, pp 101–115

  • Krawczyk CM, Reston TJ, Beslier M-O, Boillot G (1996) Evidence for detachment tectonics on the Iberia Abyssal Plain rifted margin. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas 149, pp 603–615

  • Lagabrielle Y (1994) Ophiolites of the Southwestern Alps and the structure of the Tethyan oceanic lithosphere. Ofioliti 19(2b): 413–434

    Google Scholar 

  • Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central atlantic basement. Geology 18:319–322

    Article  Google Scholar 

  • Lagabrielle Y, Lemoine M (1997) Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. C R Acad Sci (Ser. IIa Sci) Terre Planètes 325:909–920

    Google Scholar 

  • Laubscher HP (1983) Detachment, shear and compression in the Central Alps. Geol Soc Amer Mem 158:191–211

    Google Scholar 

  • Lavier L, Buck WR, Poliakov ANB (1999) Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27:1127–1130

    Article  Google Scholar 

  • Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Gidon M, Bourdon M, Graciansky PC, Rudkiewicz J-L, Megard-Galli J, Tricart P (1986) The continental margin of the Mesozoic Tethys in the Western Alps. Marine Petroleum Geol 3:179–199

    Article  Google Scholar 

  • Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic model. Geology 15:622–625

    Google Scholar 

  • Lombardo B, Rubatto D, Castelli D (2002) Ion microprobe U-Pb dating of zircon from a Monviso metaplagiogranite: implications for the evolution of the Piedmont-Liguria Tethys in the Western Alps. Ofioliti 27:109–117

    Google Scholar 

  • Manatschal G (1999) Fluid-and reaction-assisted low-angle normal faulting: Evidence from rift-related brittle fault rocks in the Alps (Err nappe, Switzerland). J Struct Geol 21:777–793

    Article  Google Scholar 

  • Manatschal G, Bernoulli, D (1998) Rifting and early evolution of ancient ocean basins: the record of the Mesozoic Tethys and of the Galicia-Newfoundland margins. Marine Geophy Res 20:371–381

    Article  Google Scholar 

  • Manatschal G, Bernoulli D (1999) Architecture and tectonic evolution of nonvolcanic margins: Present day Galicia and ancient Adria. Tectonics 18:1099–1119

    Article  Google Scholar 

  • Manatschal G, Nievergelt P (1997) A continent-ocean transition recorded in the Err and Platta nappes (eastern Switzerland). Eclogae Geol Helv 90:3-27

    Google Scholar 

  • Manatschal G, Marquer D, Früh-Green G L (2000) Channelized fluid flow and mass transfer along a rift-related detachment fault (Eastern Alps, southeastern Switzerland). Geol Soc Amer Bull 112:21–33

    Article  CAS  Google Scholar 

  • Manatschal G, Froitzheim N, Rubenach MJ, Turrin, B (2001) The role of detachment faulting in the formation of an ocean-continent transition: insights from the Iberia Abyssal Plain. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ 187, pp 405–428

  • Manatschal G, Müntener O, Desmurs L, Bernoulli D (2003) An ancient ocean-continent transition in the Alps: the Totalp, Err-Platta, and Malenco units in the eastern Central Alps (Graubünden and northern Italy). Eclogae Geol Helv 96:131–146

    Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth and Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Pet 29:625–679

    CAS  Google Scholar 

  • Michon L, Merle O (2003) Mode of lithospheric extension: conceptual models from analogue modeling. Tectonics 22/4:1028, 10.1029/2002TC001435

  • Minshull TA, Dean SM, White RS, Whitmarsh RB (2001) Anomalous melt production after continental breakup in the southern Iberia Abyssal Plain. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ, 187, pp 537–550

  • Montenat C, Guery F, Berthou PY (1988) Mesozoic evolution of the Lusitanian basin: comparison with the adjacent margin. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson D. G. (eds) Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas, 149, pp 757–776

  • Müntener O, Hermann J (2001) The role of lower crust and continental upper mantle during formation of non-volcanic passive margins: Evidence from the Alps. In: Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ, 187, pp 267–288

  • Müntener O, Piccardo GB (2003) Melt migration in ophiolititic peridotites: the message from Alpine-Apennine peridotites and implications from embryonic ocean basins. In: Dilek Y, Robinson PT (eds) Ophiolites in Earth History, Geol Soc (London), Spec Publ, 218, pp 1–21

  • Müntener O, Hermann J, Trommsdorff V (2000) Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, eastern central Alps). J Pet 41:175–200

    Article  Google Scholar 

  • Müntener O, Desmurs L, Pettke T, Meier M, Schaltegger U (2002) Melting and melt/rock reaction in extending mantle lithosphere: trace element and isotopic constraints from passive margin peridotites. Geochimica and Cosmochimica Acta 66: A536

    Google Scholar 

  • Murillas J, Mougenot D, Boillot G, Comas MC, Banda E, Mauffret A (1990) Structure and evolution of the Galicia Interior Basin (Atlantic western Iberian continental margin). Tectonophysics 184:297–319

    Article  Google Scholar 

  • Pérez-Gussinyé M, Reston TJ (2001) Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. J Geophys Res 106NOB3:3961–3975

    Article  Google Scholar 

  • Pérez-Gussinyé M, Ranero CR, Reston TJ, Sawyer D (2003) Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia. J Geophys Res 108:2245,doi 10.1029/2001JB000901

    Google Scholar 

  • Peters T, Stettler A (1987) Time, physico-chemical conditions, mode of emplacement and geologic setting of the Totalp peridotite in the eastern Swiss Alps. Schweiz Mineral Petrogr Mitt 67:285–294

    CAS  Google Scholar 

  • Pinheiro LM, Wilson RCL, Pena dos Reis R, Whitmarsh RB, Ribeiro A (1996) The western Iberia margin: A geophysical and geological overview. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the Ocean Drilling Program, Scientific Results. College Station, Texas, 149, pp 3–23

  • Polino R, Dal Piaz GV, Gosso G (1990) Tectonic erosion at the Adria margin and accretionary processes for the Cretaceous orogeny of the Alps. Vol spec Soc Geol Italiana, 1, pp 345–367

  • Rampone E, Piccardo GB (2000) The ophiolite-oceanic lithosphere analogue: new insights from the Northern Apennines (Italy). In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: New insights from field studies and the ocean drilling program. Geol Soc Amer Spec Pap, Boulder, Colorado, 349, pp 21–34

  • Reston TJ, Krawczyk CM, Hoffmann HJ (1995) Detachment tectonics during Atlantic rifting: analysis and interpretation of the S reflection, the west Galicia margin. In: Scrutton RA, Stoker MS, Shimmield GB, Tudhope AW (eds) The Tectonics, Sedimentation and Palaeoceanography of the North Atlantic Region. Geol Soc Spec Publ, 90, pp 93–109

  • Reston TJ, Pennell J, Stubenrauch A, Walker I, Perez-Gussinye M (2001) Detachment faulting, mantle serpentinization, and serpentinite-mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology 29:587–590

    Article  Google Scholar 

  • Ricou LE (1994) Tethys reconstructed: plates, continental fragments and their boundaries since 260 Ma from Central America to Southeastern Asia. Geodinamica Acta 7:169–218

    Google Scholar 

  • Russell SM, Whitmarsh RB (2003) Magmatism at the west Iberia non-volcanic rifted continental margin: evidence from analyses of magnetic anomalies. Geophys J Int 154:706–730

    Article  Google Scholar 

  • Sanders CAE, Bertotti G, Tommasini S, Davies GR, Wijbrans JR (1996) Triassic pegmatites in the Mesozoic middle crust of the Southern Alps (Italy): Fluid inclusions, radiometric dating and tectonic implications. Eclogae Geol Helv 89:505–525

    Google Scholar 

  • Sawyer DS, Whitmarsh RB, Klaus A, et al. (1994) Proceedings of Ocean Drilling Program, Initial Reports 149. College Station, TX (Ocean Drilling Program) 149, pp 719

  • Schaltegger U, Desmurs L, Manatschal G, Müntener O, Meier M, Bernoulli D (2002) The transition from rifting to seafloor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova 14:156–162

    CAS  Google Scholar 

  • Schmid SM, Pfiffner OA, Froitzheim N, Schönborn G, Kissling E (1996) Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 15:1036–1064

    Article  Google Scholar 

  • Schönborn G (1992) Alpine tectonics and kinematic models of the central southern Alps. Mem Sci Geol Padova 44:229–393

    Google Scholar 

  • Schumacher ME, Schönborn G, Bernoulli D, Laubscher H (1997) Rifting and collision in the southern Alps. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Deep Structure of the Swiss Alps: Results From the National Research Program 20 (NFP 20). Birkhäuser, Basel, pp 186–204

  • Schwartz S, Lardeaux JM, Tricart P (2000) La zone d’Acceglio (Alpes cottiennes): un nouvel exemple de croûte continentale éclogitisée dans les Alpes occidentals. C R Acad Sci 330:859–866

    Article  Google Scholar 

  • Shillington DJ, Holbrook WS, Nunes GT, van Avendonk H, Tucholke BE, Hopper JR, Larsen HC, Louden K (2002) Seismic evidence for compositional asymmetry on the Newfoundland-Iberia nonvolcanic rifted margin pair: new results from SCREECH transect 2. Eos Trans AGU 83, Fall Meet Suppl, Abstract T52C-1210

  • Shipboard Scientific Party (2004) Leg 210 summary. In: Tucholke BE, Sibuet JC, Klaus A, et al., Proc ODP Init Repts 210: College Station, TX (Ocean Drilling Program), xx-xx

  • Sibuet JC, Louvel V, Whitmarsh RB, White RS, Horsefield SJ, Sichler B, Léon P, Recq M (1995) Constraints on rifting processes from refraction and deep-tow magnetic data: The example of the Galicia continental margin (West Iberia). In: Banda E, Talwani M, Torne M (eds) Rifted Ocean-Continent Boundaries. NATO ASI Series, Series C: Mathematical and Physical Sciences (Kluwer), 463, pp 197–217

  • Skelton ADL, Valley JW (2000) The relative timing of serpentinization and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Planet Sci Lett 178:327–338

    Google Scholar 

  • Srivastava SP, Sibuet JC, Cande S, Roest WR, Reid IR (2000) Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth Planet Sci Lett 182, 61–76

    Google Scholar 

  • Stampfli GM (1993) Le Briançonnais: Terrain exotique dans les Alpes? Eclogae Geol Helv 86:1-45

    Google Scholar 

  • Talbot C J, Ghebreab W (1997) Red Sea detachment and basement core complexes in Eritrea. Geology 25:655–658

    Article  Google Scholar 

  • Taylor B, Huchon P, Klaus A. et al. (1999a) Proceedings of the Ocean Drilling Program, Initial Results, College Station, TX (Ocean Drilling Program) 180:1-77

  • Taylor B, Goodliffe AM, Martinez F (1999b) How continents break up: Insights from Papua New Guinea. J Geophys Res 104:7497-7512

    Article  Google Scholar 

  • Tregoning P, Lambeck K, Stolz A, Morgan PJ, McClusky SC, Van der Beck P, Jackson P, Little RP, Laing A, Murphy B (1998) Estimation of current plate motions in Papua, Global Positioning System observations. J Geophys Res 103:12181–12203

    Article  Google Scholar 

  • Tucholke BE, Austin JA, Uchupi E (1989) Crustal structure and rift-drift evolution of the Newfoundland Basin. In: Tankard AJ, Balkwell HR (eds) Extensional Tectonics and Stratigraphy of the North Atlantic Margins. Amer Assoc Petroleum Geol Mem, 46, pp 247–263

  • Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlanic Ridge. J Geophys Res 103NOB5:9857–9866

    Article  Google Scholar 

  • Urquhart E (2001) Depositional environment of syn-rift sediments on the Iberia margin. Eos Trans. AGU, 82(47), Fall Meet Suppl Abstract: PP42B-0505

  • Villa IM, Hermann J, Müntener O, Trommsdorff V (2000) 40Ar/39Ar dating of multiply zoned amphibole generations (Malenco, Italy). Contr Min Petr 140:363–381

    Article  CAS  Google Scholar 

  • Wernicke B, Axen GJ (1988) On the role of isostasy in the evolution of normal fault systems. Geology 16:848–851

    Article  Google Scholar 

  • White RS, Spence GD, Fowler SR, McKenzie DP, Westbrook GK, Bowen AN (1987) Magmatism at rifted continental margins. Nature 330:439–444

    Article  Google Scholar 

  • Whitmarsh RB, Miles PR (1995) Models of the development of the West Iberia rifted continental margin at 40°30’N deduced from surface and deep-tow magnetic anomalies. J Geophys Res 100:3789–3806

    Article  Google Scholar 

  • Whitmarsh R B, Wallace PJ (2001) The rift-to-drift development of the West Iberia nonvolcanic continental margin: A summary and review of the contribution of ocean drilling program leg 173. In: Beslier, MO, Whitmarsh RB, Wallace PJ, Girardeau J (eds) Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, 173, pp 1–36

  • Whitmarsh RB, Dean SM, Minshull TA, Tompkins M (2000) Tectonic implications of exposure of lower continental crust beneath the Iberia Abyssal Plain, northeast Atlantic Ocean: geophysical evidence. Tectonics 19:919–942

    Article  Google Scholar 

  • Whitmarsh RB, Manatschal G, Minshull TA (2001) Evolution of magma-poor continental margins from rifting to sea-floor spreading. Nature 413:150–154

    Article  CAS  PubMed  Google Scholar 

  • Wilson RCL, Manatschal G, Wise S (2001a) Rifting along non-volcanic passive margins: stratigraphic and seismic evidence from the Mesozoic successions of the Alps and western Iberia. In: Wilson RCL, Whitmarsh RB, Taylor B and Froitzheim N (eds) Non-Volcanic Rifting of Continental Margins: Evidence from Land and Sea. Geol Soc (London), Spec Publ, 187, pp 429–452

  • Wilson RCL, Whitmarsh RB, Taylor B, Froitzheim N (2001b) Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea. Geol Soc (London), Spec Publ, 187, pp 585

  • Winterer EL, Bosellini A (1981) Subsidence and sedimentation on a Jurassic passive continental margin, Southern Alps, Italy. Amer Assoc Petroleum Geol Bull 65:394–421

    Google Scholar 

Download references

Acknowledgments

This paper is the result of a promise I gave long time ago to Wolfgang Franke to write a review paper about rifted margins exposed in the Alps. This paper results from a long, intense and successful collaboration with Daniel Bernoulli, Niko Froitzheim, Othmar Müntener, Laurent Desmurs, Andreas Hölker and many colleagues, too numerous to reference everybody here. I would like to thank the GDR marges (France), the Swiss National Science Foundation, and the Ocean Drilling Program for their support. I thank also Bob Whitmarsh and Yves Lagabrielle for helpful reviews and Chris Wilson for comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianreto Manatschal.

Additional information

“Dedicated to Daniel Bernoulli who taught me to compare the geological record of oceans and orogens”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manatschal, G. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) 93, 432–466 (2004). https://doi.org/10.1007/s00531-004-0394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-004-0394-7

Keywords

Navigation