Skip to main content
Log in

Authigenic sericite record of a fossil geothermal system: the Offenburg trough, central Black Forest, Germany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A fossil geothermal area is hosted by the Carboniferous, Permian and Bunter sandstones of the Offenburg intramontane trough in the central Black Forest. The hydrothermal alteration is identified on the basis of newly formed sericites, which appear as pseudomorphs after feldspar and filling of pore spaces. According to K–Ar dating of sericite, serititization occurred about 145 Ma ago (Jurassic). On the basis of δ18O analyses of sericite, sericite composition and vitrinite reflectance, the hydrothermal fluids had temperatures of 150–210 °C. Because their electrolyte content was low, these fluids are assumed to have derived from meteoric water. A second pulse of electrolyte-rich hydrothermal fluids resulted in quartz overgrowths. Fluid mobilization seems to be linked to the disintegration of Pangaea and to reactivated fault systems extending from the crystalline basement into the intramontane sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barker CE, Pawlewicz MJ (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In: Buntebarth G, Stegena (eds) Paleogeothermics. Springer, Berlin Heidelberg New York, Lecture Notes in Earth Sciences 5:79–93

  • Bechtel A, Hoernes S (1990) Oxygen isotope fractionation between oxygen of different sites in illite minerals: a potential single-mineral thermometer. Contrib Mineral Petrol 104:463–470

    CAS  Google Scholar 

  • Behr H-J, Horn EE, Frentzel-Beyme K, Reutel C (1987) Fluid inclusions characteristics of the Variscan and post-Variscan mineralizing fluids in the Federal Republic of Germany. Chem Geol 61:273–285

    Article  CAS  Google Scholar 

  • Bonhomme MG, Thuizat R, Pinault Y, Clauer N, Wendling A, Winkler R (1975) Méthode de datation potassium-argon. Appareillage et technique. Notes Tech Inst Géol Strasbourg 3:1–53

  • Bostik NH, Cashman SM, McCulloh TH, Waddel CT (1979) Gradients of vitrinite reflectance and present temperature in the Los Angeles and Ventura Basins, California. In: Oltz DF (ed) Low temperature metamorphism of kerogen and clay minerals. Pacific Sect SEPM Spec Symp, pp 65–96

  • Brockamp O, Zuther M (1983) Das Uranvorkommen Müllenbach/Baden-Baden: eine epigenetisch-hydrothermale Imprägnationslagerstätte in Sedimenten des Oberkarbon. Teil II. Das Nebengestein. N Jahrb Mineral Abh 184:22–33

    Google Scholar 

  • Brown G, Brindley GW (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineral Soc Lond, pp 305–359

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Google Scholar 

  • Cathelineau M, Izquierdo G (1988) Temperature–composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib Mineral Petrol 100:418–428

    CAS  Google Scholar 

  • Clauer N, O’Neil JR, Furlan S (1995) Clay minerals as record of temperature conditions and duration of thermal anomalies in the Paris basin, France. Clay Miner 30:1–13

    CAS  Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine penta-fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    CAS  Google Scholar 

  • Ellis AJ (1979) Explored geothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 632–683

  • Fiebig J, Hoefs J (2002) Hydrothermal alteration of biotite and plagioclase as inferred from intragranular oxygen isotope- and cation-distribution patterns. Eur J Mineral 14:49–60

    Article  CAS  Google Scholar 

  • Flehmig W, Gehlken PL (1988) Chemical variations in the octahedral composition of Paleozoic illites and their genetic significance: an infrared spectroscopic study. N Jahrb Mineral Mh 6:249–258

    Google Scholar 

  • Flehmig W, Kurze R (1973) Die quantitative infrarotspektroskopische Phasenanalyse von Mineralmengen. N Jahrb Mineral Abh 119:101–112

    CAS  Google Scholar 

  • Franzke HJ, Ahrendt H, Kurz S, Wemmer K (1996) K-Ar Datierungen von Illiten aus Kataklasiten der Floßbergstörung im südöstlichen Thüringer Wald und ihre geologische Interpretation. Z geol Wissensch 24:441–456

    CAS  Google Scholar 

  • Geyer OF, Gwinner MP (1991) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart

  • Hagedorn B, Lippolt HJ (1994) Isotopische Alter von Zerrüttungszonen als Altersschranken der Freiamt-Sexau-Mineralisation (Mittlerer Schwarzwald). Abh geol Landesamt Baden-Württemberg 14:205–219

  • Hibsch C, Jarrige JJ, Cushing EM, Mercier J (1995) Paleostress analysis, a contribution to the understanding of basin tectonics and geodynamic evolution. Example of the Permian/Cenozoic tectonics of Great Britain and geodynamic implications in western Europe. Tectonophysics 252:103–136

    Article  Google Scholar 

  • Hood A, Gutjahr CCM, Heacock RL (1975) Organic metamorphism and the generation of petroleum. Am Assoc Petrol Geol Bull 59:986–996

    Google Scholar 

  • Hunziker JC, Frey M, Clauer N, Dallmeyer RD, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib Mineral Petrol 92:157–180

    CAS  Google Scholar 

  • Ji J, Browne PRL (2000) Relationship between illite crystallinity and temperature in active geothermal systems of New Zealand. Clays Mineral 48:139–144

    CAS  Google Scholar 

  • Kessler G, Leiber J (1994) Erläuterungen zu Blatt 7613 Lahr/Schw.-Ost. Geol LA Baden Württemberg, Freiburg

  • Komninou A, Yardley BWD (1997) Fluid-rock interactions in the Rhine Graben: a thermodynamic model of the hydrothermal alteration observed in deep drilling. Geochim Cosmochim Acta 61:515–531

    Article  CAS  Google Scholar 

  • McDowell SD, Elders WA (1980) Authigenic layer silicate mineral in borehole Elmore 1, Salton Sea geothermal field, California, U.S.A. Contrib Mineral Petrol 74:293–310

    CAS  Google Scholar 

  • Mertz DF (1987) Isotopengeochemische und mineralogische Untersuchungen an postvaristischen hydrothermalen Silikaten. PhD Thesis, University of Heidelberg

  • Meyer M, Brockamp O, Clauer N, Renk A, Zuther M (2000) Further evidence for a Jurassic mineralizing event in central Europe: K-Ar dating of hydrothermal alteration and fluid inclusion systematics in wall rocks of the Käfersteige fluorite vein deposit in the northern Black Forest, Germany. Miner Deposita 35:754–761

    Article  CAS  Google Scholar 

  • Mitchell JG, Halliday AN (1976) Extent of Triassic-Jurassic hydrothermal ore deposits on the North Atlantic margins. Trans Inst Mining Metall B 85:159–161

    CAS  Google Scholar 

  • Möller P (1986) Anorganische Geochemie; eine Einführung. Springer, Berlin Heidelberg New York, Heidelberger Taschenbücher 240

  • Newman ACD, Brown G (1987) The chemical constitutions of clays. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineral Soc Lond, pp 1–128

  • Pettke T, Diamond LW, Kramers JD (2000) Mesothermal gold lodes in the north-western Alps: a review of genetic constraints from radiogenic isotopes. Eur J Mineral 12:213–230

    CAS  Google Scholar 

  • Potts PJ (1992) A handbook of silicate rock analysis. Blackie, Glasgow

  • Regelmann K (1907) Erläuterungen zu Blatt 7415 Seebach (früher 91 Obertal-Kniebis). Geol LA Baden Württemberg, Stuttgart

  • Reinl C (2000) Hydrothermale Alteration des Deckgebirges (Rotliegendes und Buntsandstein) im Offenburger Trog, Schwarzwald. Dr Thesis, University of Bremen

  • Reinl C, Brockamp O (1999) Hydrothermal alteration of sedimentary cover rocks in the Offenburg Trough, Black Forest, Germany. Terra Nostra 99/6:248–249

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, Essex

    Google Scholar 

  • Ruggieri G, Gianelli G (1999) Multi-stage fluid circulation in a hydraulic fracture breccia of the Larderello geothermal field (Italy). J Volcanol Geotherm Res 90:241–261

    Article  CAS  Google Scholar 

  • Savin SM, Lee M (1988) Isotopic studies in phyllosilicates. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Rev Mineral 19:189–223

    CAS  Google Scholar 

  • Schoen R (1962) Semi-quantitative analysis of chlorites by X-ray diffraction. Am Mineral 47:1384–1392

    CAS  Google Scholar 

  • Sibson RH, Moore JM, Rankin AH (1975) Seismic pumping—a hydrothermal fluid transport mechanism. J Geol Soc Lond 131:653–659

    Google Scholar 

  • Skinner BJ (1979) The many origins of hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 1–29

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    CAS  Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am Assoc Petrol Geol Bull 74:1559–1570

    CAS  Google Scholar 

  • Taylor GH, Teichmüller M, Davis A, Diessel CFK, Littke R, Robert P (1998) Organic petrology. Borntraeger, Berlin

  • Wernicke RS, Lippolt H-J (1993) Botryoidal hematite from the Schwarzwald (Germany): heterogeneous uranium distributions and their bearing on the helium dating method. Earth Planet Sci Lett 114:287–300

    Article  CAS  Google Scholar 

  • Zuther M (1989) TAB: Programm zur quantitativen Mineralanalyse. Uni Bremen, Fachgebiet Mineralogie

  • Zuther M (1992) D500-Profil: Programme zur Bearbeitung von Röntgendiffraktogrammen. Uni Bremen, Fachgebiet Mineralogie

  • Zuther M, Brockamp O (1988) The fossil geothermal system of the Baden-Baden trough (Northern Black Forest, Germany). Chem Geol 71:337–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Schlegel assisted sampling in the Offenburg trough. Chemical analyses of the rock samples were performed by C. Reinl for her Dr. rer. nat. dissertation. We gratefully acknowledge δ18O determinations by S. Hoernes, and vitrinite reflectance measurements by T. Wagner. The paper benefited from fluid-inclusion studies of U. Hünken on samples from the Baden-Baden trough. The efforts and comments of the reviewer R. Altherr are appreciated. We wish to express our thanks to all persons who contributed to our investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Zuther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockamp, O., Clauer, N. & Zuther, M. Authigenic sericite record of a fossil geothermal system: the Offenburg trough, central Black Forest, Germany. Int J Earth Sci (Geol Rundsch) 92, 843–851 (2003). https://doi.org/10.1007/s00531-003-0368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0368-1

Keywords

Navigation